1. The goal of this problem is to carefully prove a lower bound on testing whether a distribution is uniform.

(a) For a distribution p over $[n]$ and a permutation π on $[n]$, define $\pi(p)$ to be the distribution such that for all i, $\pi(p)_{\pi(i)} = p_i$.

Let A be an algorithm that takes samples from a black-box distribution over $[n]$ as input. We say that A is symmetric if, once the distribution is fixed, the output distribution of A is identical for any permutation of the distribution.

Show the following: Let A be an arbitrary testing algorithm for uniformity (as defined in class and in problem 1(c), a testing algorithm passes distributions that are uniform with probability at least $2/3$ and fails distributions that are ϵ-far in L_1 distance from uniform with probability at least $2/3$). Suppose A has sample complexity at most $s(n)$, where n is the domain size of the distributions. Then, there exists a symmetric algorithm that tests uniformity with sample complexity at most $s(n)$.

(b) Define a fingerprint of a sample as follows: Let S be a multiset of at most s samples taken from a distribution p over $[n]$. Let the random variable C_i, for $0 \leq i \leq s$, denote the number of elements that appear exactly i times in S. The collection of values that the random variables $\{C_i\}_{0 \leq i \leq s}$ take is called the fingerprint of the sample.

For example, let $D = \{1..7\}$ and the sample set be $S = \{5, 7, 3, 3, 4\}$. Then, $C_0 = 3$ (elements 1, 2 and 6), $C_1 = 3$ (elements 4, 5 and 7), $C_2 = 1$ (element 3), and $C_i = 0$ for all $i > 2$.

Show the following: If there exists a symmetric algorithm A for testing uniformity, then there exist an algorithm for testing uniformity that gets as input only the fingerprint of the sample that A takes.

(c) Show that any algorithm making $o(\sqrt{n})$ queries cannot have the following behavior when given error parameter ϵ and access to samples of a distribution p over a domain D of size n:

- if $p = U_D$, then A outputs “pass” with probability at least $2/3$.
- if $||p - U_D||_1 > \epsilon$, then A outputs “fail” with probability at least $2/3$

2. This problem concerns testing closeness to a distribution that is entirely known to the algorithm. Though you will give a tester that is less efficient than the one seen in lecture, this method employs a useful bucketing scheme. In the following, assume that p and q are distributions over D. The algorithm is given access to samples of p, and knows an exact description of the distribution q in advance – the query complexity of the algorithm is only the number of samples from p. Assume that $|D| = n$.

1
Use the notation that U_S is the uniform distribution over set S, and that $q_{i,S}$ is the distribution q conditioned on falling in set S.

(a) Let p be a distribution over domain S. Let S_1, S_2 be a partition of S. Let $r_1 = \sum_{j \in S_1} p(j)$ and $r_2 = \sum_{j \in S_2} p(j)$. Let the restrictions p_1, p_2 be the distribution p conditioned on falling in S_1 and S_2 respectively – that is, for $i \in S_1$, let $p_1(i) = p(i)/r_1$ and for $i \in S_2$, let $p_2(i) = p(i)/r_2$. For distribution q over domain S, let $t_1 = \sum_{j \in S_1} q(j)$ and $t_2 = \sum_{j \in S_2} q(j)$, and define q_1, q_2 analogously. Suppose that $|r_1 - t_1| + |r_2 - t_2| < \epsilon_1$, $\|p_1 - q_1\|_1 < \epsilon_2$ and $\|p_2 - q_2\|_1 < \epsilon_2$. Show that $\|p - q\|_1 \leq \epsilon_1 + \epsilon_2$.

(b) Define $\text{Bucket}(q, D, \epsilon)$ as a partition $\{D_0, D_1, \ldots, D_k\}$ of D with $k = \lfloor \log(|D|/\epsilon)/(\log(1+\epsilon)) \rfloor$, $D_0 = \{i \mid q(i) < \epsilon/|D|\}$, and for all i in $[k]$,

$$D_i = \left\{ j \in D \mid \frac{\epsilon(1+\epsilon)^{i-1}}{|D|} \leq q(j) < \frac{\epsilon(1+\epsilon)^i}{|D|} \right\}.$$

Show that if one considers the restriction of q to any of the buckets D_i, then the distribution is close to uniform: i.e., Show that if q is a distribution over D and $\{D_0, \ldots, D_k\} = \text{Bucket}(q, D, \epsilon)$, then for $i \in [k]$ we have $\|q_{D_i} - U_{D_i}\|_1 \leq \epsilon$, $\|q_{D_i} - U_{D_i}\|_2 \leq \epsilon^2/|D_i|$, and $q(D_0) \leq \epsilon$ (where $q(D_0)$ is the total probability that q assigns to set D_0).

Hint: it may be helpful to remember that $1/(1+\epsilon) > 1 - \epsilon$.

(c) Let $(D_0, \ldots, D_k) = \text{Bucket}(q, [n], \epsilon)$. For each i in $[k]$, if $\|p_{D_i}\|_2 \leq (1+\epsilon^2)/|D_i|$ then $|p_{D_i} - U_{D_i}|_1 \leq \epsilon$ and $|p_{D_i} - q_{D_i}|_1 \leq 2\epsilon$.

(d) Show that for any fixed q, there is an $\tilde{O}(\sqrt{n}\text{poly}(1/\epsilon))$ query algorithm A with the following behavior:

Given access to samples of a distribution p over domain D, and an error parameter ϵ,

- if $p = q$, then A outputs “pass” with probability at least $2/3$.
- if $|p - q|_i > \epsilon$, then A outputs “fail” with probability at least $2/3$

(e) (Don’t turn in) Note that the last problem part generalizes uniformity testing. As a sanity check, what does the algorithm do in the case that $q = U_D$? Also, it is open whether the time complexity of the algorithm can also be made to be $\tilde{O}(\sqrt{n}\text{poly}(1/\epsilon))$ (assume that q is given as an array, in which accessing q_i requires one time step).

3. Let p be a distribution over $[n] \times [m]$. We say that p is independent if the induced distributions $\pi_1 p$ and $\pi_2 p$ are independent, i.e., that $p = (\pi_1 p) \times (\pi_2 p)$. Equivalently, p is independent if for all $i \in [n]$ and $j \in [m]$, $p(i, j) = (\pi_1 p)(i) \cdot (\pi_2 p)(j)$.

We say that p is ϵ-independent if there is a distribution q that is independent and $\|p - q\|_1 \leq \epsilon$. Otherwise, we say p is not ϵ-independent or is ϵ-far from being independent.

1For a distribution A over $[n] \times [m]$, and for $i \in \{1, 2\}$, we use $\pi_i A$ to denote the distribution you get from the procedure of choosing an element according to A and then outputting only the value of the the i-th coordinate.
Given access to independent samples of a distribution \(p \) over \([n] \times [m]\), an independence tester outputs “pass” if \(p \) is independent, and “fail” if \(p \) is \(\epsilon \)-far from independent (with error probability at most \(1/3 \)).

(a) Prove the following: Let \(A, B \) be distributions over \(S \times T \). If \(\| A - B \|_1 \leq \epsilon/3 \) and \(B \) is independent, then \(\| A - (\pi_1 A) \times (\pi_2 A) \|_1 \leq \epsilon \).

Hint: It may help to first prove the following. Let \(X_1, X_2 \) be distributions over \(S \) and \(Y_1, Y_2 \) be distributions over \(T \). Then \(\| X_1 \times Y_1 - X_2 \times Y_2 \|_1 \leq \| X_1 - X_2 \|_1 + \| Y_1 - Y_2 \|_1 \).

(b) Give an independence tester which makes \(\tilde{O}((nm)^{2/3}poly(1/\epsilon)) \) queries. (You may use the L1 tester mentioned in class, which uses \(\tilde{O}(n^{2/3}poly(1/\epsilon)) \) samples, without proving its correctness.)