
Sublinear Time Algorithms October 14, 2020

Homework 3

Lecturer: Ronitt Rubinfeld Due Date: October 29, 2020

Turn in your solution to each problem on a separate sheet of paper, with your name on each
one.

1. The goal of this problem is to carefully prove a lower bound on testing whether a distri-
bution is uniform.

(a) For a distribution p over [n] and a permutation π on [n], define π(p) to be the
distribution such that for all i, π(p)π(i) = pi.

Let A be an algorithm that takes samples from a black-box distribution over [n]
as input. We say that A is symmetric if, once the distribution is fixed, the output
distribution of A is identical for any permutation of the distribution.

Show the following: LetA be an arbitrary testing algorithm for uniformity (as defined
in class and in problem 1(c),a testing algorithm passes distributions that are uniform
with probability at least 2/3 and fails distributions that are ε-far in L1 distance from
uniform with probability at least 2/3). Suppose A has sample complexity at most
s(n), where n is the domain size of the distributions. Then, there exists a symmetric
algorithm that tests uniformity with sample complexity at most s(n).

(b) Define a fingerprint of a sample as follows: Let S be a multiset of at most s samples
taken from a distribution p over [n]. Let the random variable Ci, for 0 ≤ i ≤ s,
denote the number of elements that appear exactly i times in S. The collection
of values that the random variables {Ci}0≤i≤s take is called the fingerprint of the
sample.

For example, let D = {1..7} and the sample set be S = {5, 7, 3, 3, 4}. Then, C0 = 3
(elements 1, 2 and 6), C1 = 3 (elements 4, 5 and 7), C2 = 1 (element 3), and Ci = 0
for all i > 2.

Show the following: If there exists a symmetric algorithm A for testing uniformity,
then there exist an algorithm for testing uniformity that gets as input only the
fingerprint of the sample that A takes.

(c) Show that any algorithm making o(
√
n) queries cannot have the following behavior

when given error parameter ε and access to samples of a distribution p over a domain
D of size n:

• if p = UD, then A outputs “pass” with probability at least 2/3.

• if ||p− UD||1 > ε, then A outputs “fail” with probability at least 2/3

2. This problem concerns testing closeness to a distribution that is entirely known to the
algorithm. Though you will give a tester that is less efficient than the one seen in lecture,
this method employs a useful bucketing scheme. In the following, assume that p and q
are distributions over D. The algorithm is given access to samples of p, and knows an
exact description of the distribution q in advance – the query complexity of the algorithm
is only the number of samples from p. Assume that |D| = n.

1

Use the notation that US is the uniform distribution over set S, and that q|S is the
distribution q conditioned on falling in set S.

(a) Let p be a distribution over domain S. Let S1, S2 be a partition of S. Let r1 =∑
j∈S1

p(j) and r2 =
∑
j∈S2

p(j). Let the restrictions p1, p2 be the distribution p
conditioned on falling in S1 and S2 respectively – that is, for i ∈ S1, let p1(i) =
p(i)/r1 and for i ∈ S2, let p2(i) = p(i)/r2. For distribution q over domain S,
let t1 =

∑
j∈S1

q(j) and t2 =
∑
j∈S2

q(j), and define q1, q2 analogously. Suppose
that |r1 − t1| + |r2 − t2| < ε1, ||p1 − q1||1 < ε2 and ||p2 − q2||1 < ε2. Show that
||p− q||1 ≤ ε1 + ε2.

(b) Define Bucket(q,D, ε) as a partition {D0, D1, . . . , Dk} ofD with k = dlog(|D|/ε)/(log(1+
ε))e, D0 = {i | q(i) < ε/|D|}, and for all i in [k],

Di =

{
j ∈ D

∣∣∣∣∣ ε(1 + ε)i−1

|D|
≤ q(j) < ε(1 + ε)i

|D|

}
.

Show that if one considers the restriction of q to any of the buckets Di, then the
distribution is close to uniform: i.e., Show that if q is a distribution over D and
{D0, . . . , Dk} = Bucket(q,D, ε), then for i ∈ [k] we have ||q|Di

− UDi ||1 ≤ ε, ‖q|Di
−

UDi‖22 ≤ ε2/|Di|, and q(D0) ≤ ε (where q(D0) is the total probability that q assigns
to set D0).

Hint: it may be helpful to remember that 1/(1 + ε) > 1− ε.
(c) Let (D0, . . . , Dk) = Bucket(q, [n], ε). For each i in [k], if ‖p|Di

‖22 ≤ (1 + ε2)/|Di| then
|p|Di

− UDi |1 ≤ ε and |p|Di
− q|Di

|1 ≤ 2ε.

(d) Show that for any fixed q, there is an Õ(
√
npoly(1/ε)) query algorithm A with the

following behavior:

Given access to samples of a distribution p over domain D, and an error parameter
ε,

• if p = q, then A outputs “pass” with probability at least 2/3.

• if |p− q|1 > ε, then A outputs “fail” with probability at least 2/3

(e) (Don’t turn in) Note that the last problem part generalizes uniformity testing. As a
sanity check, what does the algorithm do in the case that q = UD? Also, it is open
whether the time complexity of the algorithm can also be made to be Õ(

√
npoly(1/ε))

(assume that q is given as an array, in which accessing qi requires one time step).

3. Let p be a distribution over [n] × [m]. We say that p is independent if the induced
distributions π1p and π2p are independent, i.e., that p = (π1p) × (π2p).

1 Equivalently, p
is independent if for all i ∈ [n] and j ∈ [m], p(i, j) = (π1p)(i) · (π2p)(j).
We say that p is ε-independent if there is a distribution q that is independent and ||p−q||1 ≤
ε. Otherwise, we say p is not ε-independent or is ε-far from being independent.

1For a distribution A over [n]× [m], and for i ∈ {1, 2}, we use πiA to denote the distribution you get from the
procedure of choosing an element according to A and then outputting only the value of the the i-th coordinate.

2

Given access to independent samples of a distribution p over [n] × [m], an independence
tester outputs “pass” if p is independent, and “fail” if p is ε-far from independent (with
error probability at most 1/3).

(a) Prove the following: Let A,B be distributions over S × T . If ||A − B||1 ≤ ε/3 and
B is independent, then ||A− (π1A)× (π2A)||1 ≤ ε.
Hint: It may help to first prove the following. Let X1, X2 be distributions over S and
Y1, Y2 be distributions over T . Then ||X1×Y1−X2×Y2||1 ≤ ||X1−X2||1+||Y1−Y2||1.

(b) Give an independence tester which makes Õ((nm)2/3poly(1/ε)) queries. (You may
use the L1 tester mentioned in class, which uses Õ(n2/3poly(1/ε)) samples, without
proving its correctness.)

3

