December 1, 2020

Homework 5

Lecturer: Ronitt Rubinfeld

Due Date: Not due.

These problems are all extra credit.

- 1. Give a lower bound on computing a multiplicative estimate on the MST of a graph G in adjacency list representation: Give two distributions over graphs of degree at most d and weights in the range $\{1, \ldots, w\}$ (for w = o(n)) such that
 - (a) graphs in one distribution have an MST weight that is at least twice the MST weight of the graphs in the in other distribution
 - (b) in order to distinguish the two distributions with constant probability of success, one must make at least $\Omega(w)$ queries

If you can get the lower bound to have some nontrivial dependence on d and ϵ , even better!

(Note: It is possible to write this lower bound without explicitly using Yao's method.) You may assume that G is in adjacency list representation.

- 2. Suppose an algorithm has the following behavior when given error parameter ϵ and access to samples of a distribution p over a domain $D = \{1, \ldots, n\}$:
 - if p is monotone $(p(i) \ge p(i+1)$ for all i), then \mathcal{A} outputs "pass" with probability at least 2/3.
 - if for all monotone distributions q over D, $|p q|_1 > \epsilon$, then A outputs "fail" with probability at least 2/3

Show that this algorithm must make $\Omega(\sqrt{n})$ queries.

Hint: Reduce from the problem of testing uniformity.

- 3. In the following questions, assume that all input graphs start out with unique IDs.
 - (a) Given a graph of max degree at most Δ , show that the edges can be decomposed into at most Δ oriented forests (where each node has outdegree at most 1, the roots have outdegree 0, and edges point along the path to a root). Show that given a node, the edge in oriented forest *i* and the direction of the edge, can be computed in $O(\Delta)$ sequential time.
 - (b) Give a distributed algorithm for 6-coloring trees. Assume that the tree can be viewed as a rooted tree in which children know who their parent is. For full credit, your algorithm should run in $k = O(\log^* n)$ rounds. Note that this gives an LCA for 6-coloring trees which runs in $2^{O(\log^* n)} = O(\log^* n)$ probes. *Hint: Consider algorithms in which a node u looks at its parent v and recolors itself based on the location of the first bit which differs between u and v.*
 - (c) Given graph G along with a c-coloring of the nodes (assume you can query the coloring of any node in 1 step). Show how to find an MIS in c distributed rounds.
 - (d) Combine the above to give an LCA for 6^{Δ} coloring a degree at most Δ graph G.