Lecture 10

Testing dense graph properties via SRL:
Δ-freeness

Begin lower bound

Density \& Regularity of set pairs:
def. For $A, B \leq V$ st.
(1) $A \cap B=\varphi$
(2) $|A|,|B|>1$

Let $e(A, B)=\mathbb{\text { edges between } A + B}$

\Rightarrow density $d(A, B)=\frac{e(A, B)}{|A| \cdot|B|}$
Say A, B is γ-regular if $\forall A^{\prime} \leq A, B^{\prime} \leq B$
st.

$$
\left|A^{\prime}\right| \geq \gamma|A|
$$

$$
\left|B^{\prime}\right| \geq \gamma|B|
$$

$\left|d\left(A^{\prime}, B^{\prime}\right)-d(A, B)\right| \leq \gamma$

St. if A, B, C disjoint subsets of V st. each pair
is γ-regular with density $>M$
then G contains $\quad \geqslant \delta \cdot|A| \cdot|B| \cdot|C|$ with node in each of A, B, C.
compare for radom tripartite graphs: $\eta^{3} \cdot|A||B||C|$

Do interesting graphs have regularity properties?
Yes in some sense all graphs do
can be approximated as small collection of random regular sets

Szemerédis Regularity Lemma
would like it to say:
"one can equipartition nodes of V into $V_{1 . .} V_{k}$ (for cons k) sit.

will get only "most"

$$
\leq \varepsilon\binom{k_{2}}{2}
$$

Szemerédi's Regularity Lemma: (especially useful version)
$\forall m, \varepsilon>0 \quad \exists \quad T=T(m, \varepsilon) \quad$ s.t. given $\quad G=(V, E)$ sit. $|V|>T$

+ an equipartition of V into V sets $\leftarrow \#$ is cost $\begin{aligned} & m \\ & \text { ind } \text { of } n \\ & \angle L T\end{aligned}$
then exists equipartition B into K sets which refines of st $\quad m \leq k \leq T$
$+\leq \varepsilon\binom{k}{2}$ set pairs not ε-regular
count \# partitions each pairs behoves like radom graph
Note: T does not depend on $|V|$
 \Rightarrow have nice

An application of the SRL:

Given G in adj matrix form Is it Δ-free?
desired behavior: if G is Δ-free, output PASS
if $G \underbrace{\varepsilon-\text { far }}_{\text {delete }}$ from Δ-free output FAIL with prob $\geq 3 / 4$ 1 -sided

$$
\geq \sum n^{2} \text { edges }
$$ error

Algorithm:
$O\left(8^{-1}\right)$ times:

$$
\text { Pick } V_{1}, V_{2}, V_{3} \epsilon_{r} V
$$

Accept

$$
\text { if } \Delta \text { reject \& halt }
$$

Just because you need to delete $\geq \varepsilon n^{2}$ edges, do we know that there are a lot of $\Delta^{\prime} S ? ? ?$

The $\forall \varepsilon, \quad \exists \delta^{\text {feta of e only }}$ sit. $\forall G \quad|V|=n$
$+s t_{1} G$ is ε-far from Δ-free, then G has $\geq \delta\binom{n}{z}$ distinct $\Delta^{\prime} s$

Corr Algorithm has desired behavior

Why? if Δ-free i we never reject

- if ε-far from 0 -free:

$$
\geq \delta\left(\frac{n}{3}\right) \quad \Delta \prime s
$$

\Rightarrow each loop passes with prob $\subseteq 1-8$
$\operatorname{Pr}[$ dort final $\Delta] \leq(1-8)^{c / \delta}$

$$
\leq e^{-c}<\uparrow^{1 / 4}
$$

\uparrow
for proper choice
of c
\Rightarrow reject with prob $\geq 3 / \$$

Th m $\forall \varepsilon, \quad \exists \delta \quad$ sit $\quad \forall G \quad$ sit. $|V|=n$

+ st. $_{1} \quad G$ is ε-far from Δ-free,
then G has $\geq \delta\binom{n}{z}$ distinct Δ 's
Proof
use regularity to get equipartition $\left\{V_{1} \cdots V_{k}\right\} \quad$ sit.
\# partitions $\frac{5}{\varepsilon} \leq k \leq T\left(\frac{5}{\varepsilon}, \varepsilon^{\prime}\right)$ need $\geq \frac{5}{\varepsilon}$ sets in partition so that no set has $\geq \frac{\varepsilon}{5}$ fraction.
equivalent: size of partitions $\frac{\varepsilon n}{5} \geq \frac{n}{k} \geq \frac{n}{T\left(\frac{5}{\varepsilon}, \varepsilon^{\prime}\right)}$ of nodes
how? Start with arbitrary equipartitiond into $5 / \varepsilon$ sets
for $\varepsilon^{\prime} \equiv \min \left\{\frac{\varepsilon}{5}, \gamma^{\Delta}\left(\frac{\varepsilon}{5}\right)\right\}$
st. $\leq \varepsilon^{\prime}\binom{k}{2}$ pairs not ε^{\prime}-regular
assume $\frac{n}{k}$ is integer

$$
G^{\prime} \equiv \text { take } G \text { and }
$$

$$
\frac{\varepsilon n}{5} \geq \frac{n}{x} \geq \frac{n}{T\left(\frac{5}{\varepsilon}, \varepsilon^{\prime}\right)}
$$

\#nodes in tnoleses in
partition

1) delete edyes internal to any $V_{i}{ }^{\text {i }}$ it se small (if \#nodes per partition small, few internal edges)

$$
\text { how many? } \leq \underbrace{\text { \#edges }}_{\substack{\frac{n}{k}}} \cdot n \leq \frac{n^{2}}{k} \leq \frac{\varepsilon n^{2}}{5}
$$

$\frac{\varepsilon n}{5} \geq \frac{n}{k} \geq \frac{n}{T\left(\frac{5}{\varepsilon}, \varepsilon^{\prime}\right)}$

\#nedes in
partition $\quad d(A, B)=\frac{e(A, B \mid}{\|A \cdot\| B \mid}$

A, B is γ-regular if $\forall A^{\prime} \leq A, B^{\prime} \leq B$
s.t.
$\left\|A^{\prime}\right\| \geq \gamma\|A\|$
$\left\|B^{\prime}\right\| \geq \gamma\|B\|$
$\left\|d\left(A^{\prime}, B^{\prime}\right)-d(A, B)\right\|<\gamma$

$|$| $\gamma^{\lambda}\left(\eta \left\lvert\,=\frac{1}{2} x\right.\right.$ |
| :--- |
| $\delta^{8}(\eta) \left\lvert\, \equiv(1-\eta) \frac{n^{3}}{8} \geq \frac{n^{3}}{16}\right.$ |

2) delete edges between E'-nouregular pairs
how many?

$$
\begin{aligned}
& \varepsilon^{\prime} \equiv \min \left\{\frac{\varepsilon}{5}, r^{8}\left(\frac{\varepsilon}{5}\right)\right\} \\
& \nabla \leq \varepsilon^{\prime}\left(\frac{k}{2}\right) \text { pairs not } \varepsilon^{\prime} \text {-regular }
\end{aligned}
$$

3) delete edges between $\underbrace{\text { low density pairs }}_{<\varepsilon / 5}$

$$
\frac{\varepsilon n}{5} \geq \frac{n}{k} \geq \frac{n}{T\left(\frac{5}{\varepsilon}, \varepsilon^{\prime}\right)}
$$

$$
d(A, B)=\frac{e(A, B \mid}{|A \cdot| B \mid}
$$

A, B is γ-regular if $\forall A^{\prime} \leq A, B^{\prime} \leq B$

$$
\text { st. }\left|A^{\prime}\right| \geq \gamma|A|
$$

$$
\left|B^{\prime}\right| \geq \gamma|B|
$$

$$
\left|d\left(A_{1}^{\prime}, B^{\prime}\right)-d(A, B)\right|<\gamma
$$

$$
\begin{aligned}
& \varepsilon^{\prime} \equiv \min \left\{\frac{\varepsilon}{5}, r^{\delta}\left(\frac{\varepsilon}{5}\right)\right\} \\
& \nabla \leq \varepsilon^{\prime}\binom{k}{2} \text { pairs nt } \quad \varepsilon^{\prime} \text {-regular }
\end{aligned}
$$

Total deleted edges: $\leq \frac{\varepsilon n^{2}}{5}+\frac{\varepsilon n^{2}}{10}+\frac{\varepsilon n^{2}}{10}<\varepsilon n^{2}$
But G is ε-far from Δ-free (must delete $\geq \varepsilon h^{2}$ edges to remove all Δs) so G^{\prime} must still have a triangle!

$$
\begin{aligned}
& \text { how many? } \\
& \leq \sum_{\text {low }}\left(\frac{\varepsilon}{5}\right)\left(\frac{n}{k}\right)^{2} \quad \text { note } \sum\left(\frac{n}{k}\right)^{2} \leq\binom{ n}{2} \\
& \begin{array}{l}
\text { low } \\
\text { density } \\
\text { pairs }
\end{array} \\
& \text { pairs } \\
& \begin{array}{l}
\text { regular } \geqslant \varepsilon / 5 \quad \leq \frac{\varepsilon}{5}\binom{n}{2} \approx \frac{\varepsilon n^{2}}{10} \\
- \text { density }
\end{array}
\end{aligned}
$$

Δ in G^{\prime} must connect:

1) nodes in 3 distinct $V_{i} V_{j} V_{k}$ since delete all internal edges
2) regular pairs
since deleted all edges between irregdar pairs
3) high density pairs
since deleted all edges between lour diensitypairs

$\therefore \exists i, j, k$ distinct st $x \in V_{i}, y \in V_{j}, z \in V_{k}$

$$
\begin{aligned}
V_{i}, V_{j}, V_{k} \text { all } & \geq \frac{\frac{\varepsilon}{\prime \prime \prime}_{5}^{\prime n} \text { density pairs }}{+} \geq \\
& \underbrace{\Delta\left(\frac{\varepsilon}{5}\right)} \text {-regular } \\
& \geq \frac{\eta}{2} \geq \frac{\varepsilon}{T_{0}}
\end{aligned}
$$

Δ - counting lemma \Rightarrow

$$
\begin{aligned}
& \left.\geq \delta^{\Delta}\left(\frac{\varepsilon}{5}\right) \quad\left|V_{i}\right| \| V_{j}| | V_{k} \right\rvert\, \quad \text { triangles in } G^{\prime} \\
& \geq \frac{\delta^{\Delta}\left(\frac{\varepsilon}{s}\right) n^{3}}{\left(T\left(5 / \varepsilon, \varepsilon^{\prime}\right)\right)^{3}} \quad \Delta^{\prime} s \\
& \text { where } 8=(1-\eta) \frac{\eta^{3}}{8} \\
& \geq \Omega\left(\varepsilon^{3}\right) \\
& \geq \delta^{\prime}\binom{n}{3} \quad \Delta^{\prime} s \text { in } G^{\prime} \text { thus in } G \\
& \text { for } \quad \delta^{\prime}=6 \delta^{\Delta}\left(\frac{\varepsilon}{5}\right)\left(T\left(\frac{\xi}{4} \varepsilon^{\prime}\right)\right)^{3}
\end{aligned}
$$

$$
G \Rightarrow G^{\prime}
$$

This is a powerful technique!

- similar lemma to Δ-counting holds for all cost sized subgraphs
- almost "as is" can use same method to test all "lIst order" graph properties:

$$
\underbrace{\exists u_{1} u_{2} u_{3} \ldots u_{k}}_{\text {nodes }} \forall V_{1} \ldots v_{l} \underbrace{R\left(u_{1} \ldots u_{k} V_{1} \ldots V_{l}\right)}_{\text {defined via } \Lambda_{1} V_{1} \uparrow+\text { neighbors }} \underset{\begin{array}{c}
\text { queries to } \\
\text { adj } \\
\text { matrix }
\end{array}}{\substack{\text { a }}}
$$

ie. $\forall u_{1}, u_{2}, u_{3} \tau(\underbrace{\left.u_{1} \sim u_{2}, u_{2} \sim u_{3}, u_{3} \sim u_{1}\right)}_{\text {more generally, }}$
H-freeness for all const sized H

For dense graphs, testable properties

- 1-sided error const time \approx hereditary graph properties (closed under vertex removal: chordal, perfect, interval)
difficulty: infinite set of forbidden subgraphs
- 2-sidederror const time \approx any property that can be reduced to testing if satisfies one of finite \# of Szemeredi partitions

Maybe the reason that the dependence on ε is So bad is that this technique is too "general purpose"? Maybe Specific properties (e.g. Δ-freeness) have better testers?

An intriguing characterization of bipartite graphs:

For graphs in adjacency matrix model:
The Complexity of testing A-freeness property,
$\left[\log _{a}\right]$
Anon]

- if H bipartite, poly $\left(\frac{1}{\varepsilon}\right)$ is enough
- if H not bipartite, no poly $\left(\frac{1}{\varepsilon}\right)$ suffices \uparrow
we will prove for $H=\Delta$
terrible dependence
a required? bette ε ore e
on there a

bounds for testing
Δ-freeness:

Noil superpoly dependence on ε required!

$$
i!\quad \geq\left(\frac{c}{\varepsilon}\right)^{c \log \left(\frac{c}{\varepsilon}\right)} \text { for some const } C
$$

Main tool \#1: Additive number theory lemma
$\underline{\text { Lemma }} \forall m, \exists X<M=\{1,2, \ldots, m\} \quad$ of sire $\geq \frac{m}{e^{10 \sqrt{\lg m}}}$
with no nontrivial soln to
 points

Lemma $\forall m, \exists \times<M=\{1,2, \ldots, m\} \quad$ of \quad size $\geq \frac{m}{e^{10 \sqrt{\lg m}}}$
with no nontrivial soln to

$$
x_{1}+x_{2}=2 x_{3}
$$

examples:

$$
\begin{aligned}
& \text { Bad X: } \quad\{1,2,3\} \\
& \{5,9,13\} \\
& \text { Good X? }\{1,2,4,5, \not x, \notin \mathbb{X}, \mathbb{X}, 10, \ldots\} \leftarrow \text { how? } \\
& \{1,2,4,8,16,32, \ldots\} \leftarrow \operatorname{only}_{\log m} m \text { size }
\end{aligned}
$$

Proof Let d be integer Lemma $\forall m, \quad \exists x<M=\{1,2, \ldots, m\} \quad$ of site $\geq \frac{m}{e^{10 \sqrt{g m}}}$ with no nontrivial soln to $x_{1}+x_{2}=2 x_{3}$

$$
k \in\left\lfloor\frac{\log m}{\log d}\right\rfloor-1
$$

define $X_{B}=\left\{\sum_{i=0}^{k} x_{i} \cdot d^{i} \left\lvert\, X_{i}<\frac{d}{2}\right.\right.$ for $\left.0 \leq i \leq k+\sum_{i=0}^{k} x_{i}^{2}=B\right\}$
View $x \in M$ in base $d \quad x=\left(x_{0} x_{1} \cdots x_{k}\right)$
representation
C aim $X_{B} \leq M$

Pick B st. $\left|X_{B}\right|$ maximized:
how big can B be?
how small can $\sum\left|X_{B}\right|$ be?
so $\exists B$ st. $\left|X_{B}\right| \geq$

