Lecture 10

Testing dense graph properties via SRL: D- Freeness

Begin lower bound

Density & Regularity of set pairs:

$$def$$
. For $A_1B \leq V$ st.
(1) $A \cap B = Q$
(2) $|A|, |B| = 1$
Let $e(A_1B) = # edges$ between $A + B$
 t density $d(A_1B) = \frac{e(A_1B)}{|A| \cdot |B|}$
Say A_1B is ξ -regular if $\forall A' \leq A, B' \leq B$
 $s.t. |A'| \geq \xi |A|$
 $|B'| \geq \xi |B|$
 $d(A_1B)| \leq \xi$

disjoint subsets of V St. each pair S.t. if A, B, C

15 J- regular with density > M

distinct $\Delta^{l}s$ $\geq 8 \cdot |A| \cdot |B| \cdot |C|$ $\geq N^3 / 16 \cdot |A| \cdot |B| \cdot |C|$ A then G contains with node in each of A,B,C

compare [for random tripartite graphs" M³. [A[[B][C]]

Szemerédi's Regularity Lemma: (especially useful version)

$$\forall m, \epsilon = 70$$
 $\exists T = T(m, \epsilon)$ st. given $G = \{V_i \epsilon\}$ st. $|V| > T$
 $\Rightarrow d$ an equipartition of V into sets $e^{-\frac{1}{4}}$ ind of n
then exists equipartition B into K sets which refine d
st. $m \leq K \leq T$
 $\Rightarrow \leq \epsilon \binom{K}{2}$ set pairs not ϵ -regular const \pm partitions
 $V = ch$ pairs behaves
 $V = ch$ pairs behaves
 $V = ch$ pairs behaves
 $V = ch$ pairs $required$ on V
 $G = \frac{1}{3}$
 3

application of the SRL: An

Then
$$\forall \epsilon$$
, $\exists \delta$ st. $\forall G$ st. $M=h$
 $\forall st. G$ is ϵ -far from Δ -free,
then G has $z \delta(\frac{n}{3})$ distinct $\Delta's$
 $Proof$

Use regularity to get equipartition
$$\xi V_1 \cdots V_k \overline{3}$$
 s.t.
partitions $\frac{1}{2} \in K \in T(\underline{5}, \varepsilon')$
equivalent: size of partitions $\underline{5}_n = \frac{n}{K} = \frac{n}{T(\underline{5}, \varepsilon')}$
how? start with arbitrary equipartition f into $5/\varepsilon$ sets
for $\varepsilon' = \min\{\underline{5}, \chi^{\pm}(\underline{5})\}$
st. $\varepsilon \in (\underline{5})$ pairs not ε' -regular

assume
$$n_{k}$$
 is integer
 $G' = Take G and $Mis is$ Mis is $Mi$$

D in G' must connect:

1) nodes in 3 distinct ViVjVk Since deleted all internal edges

2) regular pairs since deleted all edges between irregular pails

•
$$\exists i_{jj}, k$$
 distinct st. $x \in V_i, y \in V_j, z \in V_k$
 V_i, V_j, V_k all $\geq \sum_{j=1}^{m} density$ pairs
 $\forall z \in V_k$
 $\forall z \in V_k$

For dense graphs, testable properties

An intriguing Characterization of bipartite graphs:

For graphs in adjacency matrix model:

Main tool #1: Additive number theory lemma

 $L_{emma} \quad \forall m, \quad \exists \ \chi < M = \underbrace{\xi_{1,2,\ldots}}_{n,2} \underbrace{\text{of size}}_{e^{i \sigma \sqrt{g_m}}} \geq \underbrace{\frac{m}{e^{i \sigma \sqrt{g_m}}}}_{e^{i \sigma \sqrt{g_m}}}$ with no pontrivial soln to no three $X_1 + X_2 = 2X_3$ evenly spared $X_1 + X_2 = 2X_3$ points $X_1 = 2X_3$ $X_1 + X_2 = 2X_3$ $X_2 = X_1 + X_2$ $X_3 = \frac{X_1 + X_2}{2}$ will use to construct graphs which are (1) far from Q-free (2) any algorithm needs (ots (interms of 2) quertes to find D

 $\forall m, \exists X \leq M = \xi_{1,2,\dots}, m\xi$ of size $\geq \frac{m}{e^{10\sqrt{g}m}}$ Lemma with no pontrivial soln to $\chi_1 + \chi_2 = 2\chi_3$ examples, Bad X: 51,2,33 35,9,133 ξ1,2,4,5, ×, ×, ×, ×, 10, ... 3 - big? Good X? $\{2, 1, 2, 4, 8, 16, 32, \dots, 3\} \in only size log m$

Proof Let d be integer

$$K \in L \begin{array}{c} loom Ym; \exists X \leq P \leq S_{1}, J, m, m, d \leq 2 \\ \text{ solutions} \\ K \in L \begin{array}{c} loom J \\ loom Ym; \exists X \leq P \leq S_{1}, J, m, m, d \leq 2 \\ \text{ with no nontrived solution to } X_{1} \times J_{2} \times J_{2$$