
Lecture 10

Testing dense graph properties via SRL :

D - freeness

Begin lower bound
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Do interesting graphs have regularity properties?

Yes in some sense at graphs do

can be approximated as small collection of random

regular sets

Szemereldi 's Regularity Lemma
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An application of the SRL :

Given G in adj matrix form

Is it 8- free ?

desired behavior : if G is O - free
, output PASS

if G E - far from o - free output FAIL with prob 2314
we
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This is a powerful technique !
-

• similar lemma to G- counting holds for all const sized subgraphs

• almost
"
as is

"

can use same method to test a1
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graph properties :
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Independent of h

For dense graphs , testable properties
• I - sided error const time K hereditary graph properties

(closed under vertex removal : chordal
, perfect,
interval )

difficulty : infinite set of forbidden subgraphs

•

2 - sided error const time I any property that can be

reduced to testing it satisfies

one of finite # of

Szemeredi partitions

Maybe the reason that the dependence on E is

so bad is that this technique is too
"

general purpose
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?

Maybe specific properties leg .

O - freeness) have better testers ?



An intriguing characterization of bipartite graphs :

For graphs in adjacency matrix model :

The Complexity of testing H - freeness property ,
Fito:3 • if H bipartite , poly Hel is enough

• if H not bipartite, no poly (E) suffices

T
we will prove for H -- o
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Main tool # I : Additive number theory lemma
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Lemme Fm
,
I XCM = { 1,2, . . . ,m } of size zmeloifgm

with no nontrivial soln to

X,tXz= 2×3

examples :
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Bad X : { 1,433
{ 519,133

Good XP
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{ 1,2, 4,8 , 16,32, i . . 3 ← only size
log
m
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