Lecture 14

More on testing distributions:

- Poissonization
- Dealing with large L_2-norm

(by the way, ... Testing Closeness)
Recall our setting:

Probability distributions: get samples (only)

Discrete Domain D s.t. $|D| = n$

$p_i = \Pr[p \text{ outputs } i]$ ← unknown

That is all we see

iid samples

Distances

ℓ_1-distance: $\|p - q\|_1 = \sum_{i=0}^{\infty} |p_i - q_i|$

ℓ_2-distance: $\|p - q\|_2 = \sqrt{\sum_{i=0}^{\infty} (p_i - q_i)^2}$

$\|p\|_2 = \sqrt{\sum p_i^2}$

$\|p - q\|_2 \leq \|p - q\|_1 \leq \sqrt{n} \cdot \|p - q\|_2$
Last time

Testing Uniformity

Goal: if \(p = U_D \) then output PASS

if \(\text{dist} (p, U_D) > \varepsilon \) then output FAIL

\(\ell_1 + \ell_2 \) distance measures
Generalizations: Given another distribution q, is $p = q$ or is p "far" from q?

$q = \text{uniform } 0(\sqrt{n})$ for all q.

1. "Identity Testing"
 - q is known to algorithm, no samples of q needed.

2. "Closeness Testing"
 - q is given via samples.

Tolerant version:

$||p-q||_1 \leq \epsilon$ for $\epsilon \leq 3$.

$||p-q||_\infty \geq \epsilon'$.

What is the sample complexity of these problems in terms of n?
Recall: “Plug-in” Estimate:

- take \(m \) samples from \(p \)
- estimate \(p(x) \) \(\forall x \) via \(\hat{p}(x) = \frac{\# \text{ times } x \text{ occurs in sample}}{m} \)
- if \(\sum_x |\hat{p}(x) - \frac{1}{n}| > \varepsilon \) reject
 else accept

How many samples?

Previously can “learn” (approximately) any distribution w.r.t. \(L_1 \) distance in \(\Theta(\frac{n}{\varepsilon^2}) \) samples.
A difficulty in analyzing distribution testers:

typical algorithm:
- Take \(m \) samples \(S_1, \ldots, S_m = S \)
- Let \(X_i = \# \) times \(i \) occurred in sample

problem:
- \(X_i \)’s not independent
- \(i = 1, \ldots, m \)
- \(X_1 = 1 \)
- \(X_i < \frac{m}{2} \)

Can we make the \(X_i \)’s independent? **Poissonization**

new algorithm:
- \(\hat{m} \leftarrow \text{Poi}(m) \)
- Take \(\hat{m} \) samples to get \(\hat{S} \)
- Let \(X_i = \# \) times \(i \) occurred in \(\hat{S} \)

Poi(\(\lambda \))
- \(\text{Pr}(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} \)
- \(E[X] = Var(X) = \lambda \)

Equivalent:
- For each \(i \in [n] \)
- \(X_i \leftarrow \text{Poi}(m \cdot p_i) \)
- Add \(X_i \) copies of \(i \) to the sample
- Randomly permute the sample
Why equivalent?

\[\text{Pr}(X_i = C \text{ according to } (1)) = \sum_{k=C}^{\infty} \text{Pr}[\hat{m} = k] \cdot (k)_{p_x}^c (1-p_x)^{k-c} \]

\[= \sum_{k=C}^{\infty} \frac{e^{-m} m^k}{k!} \cdot \frac{k^c}{c!(k-c)!} \cdot (1-p_x)^{k-c} \]

\[= \frac{e^{-m} m^c}{c!} \cdot \sum_{k=C}^{\infty} \frac{m^{k-c} (1-p_x)^{k-c}}{(k-c)!} \]

\[= \frac{m^c (1-p_x)^C}{c!} \cdot \sum_{k'=0}^{\infty} \frac{m^{k'} (1-p_x)^{k'}}{(k')!} \]

\[= e^{-mp_x} (mp_x)^c \cdot \frac{e^{m(1-p_x)}}{c!} = \text{Pr}[X_i = C] = \text{Pr}[\hat{m} = C|X_i = C] \]

Need to check joint distributions.
Another difficulty: \(\|p\|_2 \) can be large

e.g. uniformity test statistic

\[
\text{Var} \left(\hat{C} \right) = 0 \left(\frac{\|p\|_2^2}{s^2} + \frac{\|q\|_2^3}{s} \right)
\]

Goal: transform distributions \(p, q \) into \(p', q' \) such that \(\|p\|_2 + \|q\|_2 \) small

```
\|p - q\|_2 > \varepsilon \Rightarrow \|p' - q'\|_1 > \varepsilon
```

"Reduction" to small \(L_2 \)-norm case will work when \(q \) known & when given via samples
Transformation of p:

$m = \# \text{ samples } $ \text{"expected" by original alg}$

$S \leftarrow \text{Draw } m = \text{Poi}(m) \text{ samples from } p \text{ over domain } [n]$

$b_i \leftarrow \# \text{ times } i \text{ appears in } S \quad \forall i \in [n]$

$\forall \ i \ \text{ add } b_i+1 \text{ elements to new domain}$

$(i, j) \ \text{ where } j \in [b_i+1]$

New distribution p':

pick $i \in \text{R}$

pick $j \in \text{R} \ [b_i+1]$

output (i, j)

$\mathcal{P}'(ij) = \frac{p(i)}{b_i+1}$

Example:

domain of p is $[5]$

e.g. $S = \{2, 5, 3, 2, 3\}$

$b_2 = b_3 = 2$

$b_5 = 1$

all other b_i's = 0

domain of p':

$\sum (i, j)$

$\begin{array}{cccc}
(1,1) & (2,1) & (2,2) & (2,3) \\
(3,1) & (3,2) & (3,3) \\
(4,1) & \\
(5,1) & (5,2)
\end{array}$

Prob

$\begin{array}{cccc}
p(1) & \frac{p(2)}{3} & \frac{p(3)}{3} & \frac{p(3)}{3} \\
\frac{p(2)}{3} & \frac{p(3)}{3} & \frac{p(3)}{3} \\
\frac{p(3)}{3} & \frac{p(3)}{3} & \frac{p(5)}{2}
\end{array}$
Problem 2: we don't know if q's l_2 norm gets small.

Claim: \[E[\|p\|_2^2] \leq \frac{1}{m} \]

Why? \[
E[\|p\|_2^2] = E\left[\sum_{i=1}^{n} \sum_{j=1}^{b_i} p(i,j)^2\right] = E\left[\sum_{i=1}^{n} \frac{p(i)^2}{b_i+1}\right]
\]
\[
\leq \sum_{i=1}^{n} \frac{p(i)^2}{m \cdot p(i)} = \frac{1}{m} \sum_{i=1}^{n} p(i) \leq \frac{1}{m}
\]

Claim for $Z \sim \text{Poi}(\lambda)$, \[E\left[\frac{1}{Z+1}\right] \leq \frac{1}{\lambda} \]
\[
E\left[\frac{1}{Z+1}\right] = \sum_{Z=0}^{\infty} \frac{e^{-\lambda} \lambda^Z}{(Z+1)Z!} = \frac{1}{\lambda} \sum_{Z=0}^{\infty} \frac{e^{-\lambda} \lambda^{Z+1}}{(Z+1)} = \frac{1}{\lambda} \sum_{Z=1}^{\infty} \frac{e^{-\lambda} \lambda^Z}{Z!}
\]
\[
\leq \frac{1}{\lambda}
\]

$X \sim \text{Poi}(\lambda)$.
\[
\Pr(X=K) = \frac{e^{-\lambda} \lambda^K}{K!}
\]
$E[X] = \text{Var}[X] = \lambda$
After transform $p \rightarrow p'$, using same S:

\[\tilde{y} = \sum_{i=1}^{b+1} \frac{p(x_i)}{b+1} \]

Claim:

\[\mathbb{E}\left|\tilde{\Delta}_M\right| = \frac{1}{m} \]
L_2 distance estimation between two distributions p, q:

easier when both $\|p\|_2^2 + \|q\|_2^2$ are small

Theorem

Given samples of p, q, distributions on $[n]$, s.t. $b = \max \{\|p\|_2^2, \|q\|_2^2\}$, can distinguish $p=q$ from $\|p-q\|_1 > \varepsilon$ in $O(bn/\varepsilon^2)$ samples.

Corollary

If $b = \min \{\|p\|_2^2, \|q\|_2^2\}$, can distinguish $p=q$ from $\|p-q\|_1 > \varepsilon$ in $O(bn/\varepsilon^2)$ samples.

Proof Idea:

1. Estimate $\|p\|_2^2 + \|q\|_2^2$ to mutl factor of c (can do this in $O(\sqrt{n})$ samples)

2. If differ by $> c$ mutl factor, infer $p \neq q$ and reject

3. Else use Thm * with $b' = c \cdot b$
Testing Closeness

1. Let $k = \frac{n^3}{\varepsilon}$
2. $S \leftarrow$ multiset of $\text{Po}(k)$ samples from q
3. Run tester of Corr on p, q' w.r.t. S

Why does it work?

- Distinguishing $p+q$ and p', q' are equivalent
- How many samples needed?

- Why $|S| = \Theta(k)$
- $\mathbb{E}[\|q'\|^2] = O(\frac{1}{k})$ so w.h.p. $\|q'\|_2 = O(\frac{1}{\sqrt{k}})$
- $O\left(k + \frac{1}{\sqrt{k}} - n \cdot \frac{1}{\varepsilon^2}\right) = O\left(n^{2/3} \varepsilon^{1/3} + \frac{1}{n^{1/3}} \cdot \varepsilon^{-1/3} \cdot n \cdot \frac{1}{\varepsilon^2}\right)$

Run tester on p, q'

$= O\left(n^{2/3} \varepsilon^{1/3}\right)$