Lecture 15

Learning & Testing Distributions

Monotonicity
Monotone distributions (over totally ordered domain)

Def. \(p \) over domain \([n]\) is "monotone decreasing" if \(\forall i \in [n-1] \quad p(i) \geq p(i+1) \).

Monotonicity tester:

- if \(p \) monotone decreasing, output PASS
- if \(p \) \(\epsilon \) far in \(L_1 \) from any mon dec dist \(q \), output FAIL

h.w. \(i.i.d. \ L(\sqrt{n}) \) samples
Useful Tool: Birge Decomposition & Flattening

Given ϵ, decompose domain $D = 1..n$ into $l = \Theta(\frac{\log n}{\epsilon})$ intervals

I_1^ϵ, I_2^ϵ, ..., I_l^ϵ st.

$|I_k^\epsilon| = L(1+\epsilon)^k$

will drop ϵ from notation

since ϵ is fixed by algorithm

Note that

$|I_1^\epsilon| = |I_2^\epsilon| = ... = 1 \quad \Theta(\frac{1}{\epsilon})$ intervals

$|I_a^\epsilon| = |I_{a+1}^\epsilon| = ... = 2$

but then at some point the exponential "takes off"
Def. "flattened distribution": given \(q \),

\[
\forall \text{ intervals } 1 \leq j \leq l, \quad \forall i \in I_j
\]

\[
\tilde{q}(i) = \frac{q(I_j)}{|I_j|} \quad \text{total \ wt \ of \ interval} \quad \# \text{ of \ domain \ elts \ in \ interval}
\]

Note \(\tilde{q}(I_j) = q(I_j) \)

Birge's Thm: If \(q \) is monotone decreasing then \(\| \tilde{q} - q \| < \varepsilon \)

Corr: \(\varepsilon \)-close to
Birge’s Thm: \(\| \tilde{q} - q \|_1 \leq O(\varepsilon) \)

Testing algorithm:

- Take \(m \) samples \(S \) of \(q \).
- For each Birge partition \(I_j \):
 \(S_j \leftarrow S \cap I_j \)
 \(w_j \leftarrow \frac{|S_j|}{m} \)
 \(\hat{q}_j \leftarrow \text{estimate of } q(I_j) \)
- Define \(q^* \): \(\forall i \in I_j \), \(q^*(i) = \frac{\hat{q}_j}{|I_j|} \)
- Use LP on \(\hat{w}_j \)’s to verify that \(q^* \) is \(\varepsilon \)-close to monotone
 - if no, Fail + halt
- Test that \(L_1 \)-dist of \(q + q^* \) is \(\leq \frac{\varepsilon}{2} \)
 - if no, Fail + halt
 - else accept

\(\forall i \in I_j \), \(\tilde{q}(i) = \frac{q(I_j)}{|I_j|} \)

Birge Flattening

\(I_{\text{init}} = \{(0, \varepsilon)^k\} \)
Another issue: what if q not monotone?

Another issue: what if q^* not monotone?

New q^*s corrected to be uniform dist monotone.
Birge's Thm: If \(q \) is \(\varepsilon \)-close to monotone decreasing then \(\| \hat{q} - q \|_1 < O(\varepsilon) \)

Correctness (high level) (\(q \) monotone \(\Rightarrow \) test passes whp)

- If \(q \) monotone then \(\hat{q} \) monotone
- Birge \(\Rightarrow \) \(\| \hat{q} - q \|_1 < \frac{\varepsilon}{2} \)
- Since \(\hat{w}_j \)'s are close to \(q(I_j) \) \(\Rightarrow \) \(\| \hat{q} - q^* \|_1 < \frac{\varepsilon}{2} \)
- So \(q^* \) is \(\frac{\varepsilon}{C} \)-close to monotone
- \(\| q - q^* \|_1 < 2 \cdot \frac{\varepsilon}{C} \), by \(\Delta^t \)

difficulty we can distinguish \(q, q^* \) from \(\| q - q^* \|_1 > \varepsilon \) in \(O(\sqrt{n}) \) samples

here we need to distinguish \(\| q - q^* \|_1 < \varepsilon \) from \(\| q - q^* \|_1 > \varepsilon \) (in \(O(n) \) samples)

if \(q \) arbitrary, not possible. But \(q \) is monotone so we can do it.

Birge Flattening

\[\| I_{k+1} \| = \left(\frac{1}{1+\varepsilon} \right)^k \]

\[\forall i \in I_{j}, \hat{q}(i) = \frac{q(I_j)}{|I_j|} \]

Testing algorithm:

- Take \(m \) samples \(S' \) of \(q \).
- For each Birge partition \(I_j \):
 - \(S_j = S' \cap I_j \)
 - \(\hat{w}_j = \frac{|S_j|}{m} \)
- Define \(\hat{q}^* \) \(\forall i \in I_j, \hat{q}^*(i) = \frac{\hat{w}_j}{|I_j|} \)
- verify that \(\hat{q}^* \) is \(\varepsilon \)-close to monotone (no sample)
- Test that \(L_1 \)-dist of \(q, q^* \) is \(< \frac{\varepsilon}{C} \)
Birge's Thm: If q is $(\varepsilon, \text{close})$-monotone decreasing then $\| \tilde{q} - q \|_1 < O(\varepsilon)$

Correctness (high level) to show: q is ε-far from monotone \Rightarrow tester fails whp

Show contrapositive: tester passes whp $\Rightarrow q$ is ε-close to monotone

Testing algorithm:

1. Take m samples S' of q.
2. For each Birge partition I_j:
 - $S_j = S' \cap I_j$
 - $\hat{w}_j = |S_j| / m$
3. Define \tilde{q}^*:
 $\tilde{q}^*(i) = \hat{w}_j / |I_j|$
4. Verify that \tilde{q}^* is ε-close to monotone (no sample)
5. Test that L_1-dist of q and q^* is $\frac{\varepsilon}{2}$
Birge's Thm: If \(\tilde{q} \) is (\(\varepsilon \)-close) monotone decreasing, then \(\| \tilde{q} - \hat{q} \| < O(\varepsilon) \)

Proof of Birge's Thm

error in partition:

![Diagram of error in partition]

gross upper bound on error:

\[\leq (\text{max} - \text{min}) \cdot \text{partition length} \]

Type of Intervals:

- Size 1 intervals: \(|I_j| = 1 \) no error on these \(\leftarrow \) if have any short intervals then there are \(\geq \frac{1}{\varepsilon} \) size 1 intervals
- Short intervals: \(|I_j| < \frac{1}{\varepsilon} \) (why?)
- Long intervals: \(|I_j| \geq \frac{1}{\varepsilon} \)

Total error \(\leq \sum_{j=1}^{l} |I_j| \cdot (\text{max prob in } I_j - \text{min prob in } I_j) \)

\[= \sum_{\text{size intervals}} |I_j| \cdot (\text{max-min}) + \sum_{\text{long intervals}} |I_j| \cdot (\text{max-min}) \]

\[\geq \frac{1}{3} \cdot \varepsilon \cdot \varepsilon > 1 \text{ (contradiction)} \]
Bounding \(\sum |I_j| \) (max-min) of long intervals:

- Green rectangles: upper bound error

Error \(\leq (h_i - h_{i+1}) l_i + (h_{i+1} - h_{i+2}) l_{i+1} + (h_{i+2} - h_{i+3}) l_{i+2} + \ldots \)

\(\leq h_i l_i + h_{i+1} (l_i + l_{i+1}) + h_{i+2} (l_{i+1} + l_{i+2}) + \ldots \)

All \(h_i \)'s \(\leq 3 \)

Get rid of short intervals.

Area of red rectangles, which is upper bounded by 9.

By the way, we partitioned

[Dasgulakos Oranikolos Servedau] \& [Dasgulakos et al]
Slight change of perspective:

if we know \(q \) is monotone, can we learn it?

Yes! Use sampling to estimate \(\hat{q}(I_j) \)’s.

Birge’s then \(\Rightarrow \) can learn monotone distributions

to within \(\varepsilon \) \(L_1 \) error

in \(O \left(\frac{1}{\varepsilon^2 \log n} \right) \) samples.
Testing algorithm:

- Take \(m \) samples \(S' \) of \(q \).

- For each Birge partition \(I_j \):

 \[S_j = S' \cap I_j; \quad n_j = |S_j|; \quad \hat{w}_j = \frac{|S_j|}{m} \]

- Define \(q^* \) by \(\forall i \in I_j, q^*(i) = \frac{\hat{w}_j}{|I_j|} \)

- Verify that \(q^* \) is \(\varepsilon \)-close to monotone.

- Test that \(L_1 \)-dist of \(q + q^* \) is \(< \frac{3\varepsilon}{2} \).