Lecture 15

Learning & Testing Distributions:

Monotonicity
Monotone distributions (over totally ordered domain)

Def. p over domain $[n]$ is "monotone decreasing" if $\forall i \in [n-1] \ p(i) \geq p(i+1)$

Monotonicity tester:
- if p monotone decreasing, output PASS
- if p ϵ-far in L_1 from any mon dec dist q, output FAIL

with probability $\geq 1-\delta$
Useful Tool: Birge Decomposition & Flattening

Given ε, decompose domain $D = 1..n$ into $l = \Theta(\frac{\log n}{\varepsilon})$ intervals

$I_1^\varepsilon, I_2^\varepsilon, \ldots, I_l^\varepsilon$ st.

$|I_{k+1}^\varepsilon| = \left[(1+\varepsilon)^k \right]$

\leftarrow will drop ε in notation since ε is fixed by algorithm

Note that

$|I_1^\varepsilon| = |I_2^\varepsilon| = \ldots = 1 \quad \leftarrow \Theta(\frac{1}{\varepsilon})$ intervals

$|I_a^\varepsilon| = |I_{a+1}^\varepsilon| = \ldots = 2$

but then at some point the exponential "takes off"
Def. "flattened distribution":

\[
\forall \text{ intervals } 1 \leq j \leq l, \quad \forall i \in I_j
\]

\[
\tilde{q} (i) = \frac{q(I_j)}{|I_j|} \leq \text{total weight of interval}
\]

\[
\leq \text{# els in interval}
\]

\[
\text{all els in interval assigned same weight}
\]

\[
\text{Note: } q(I_j) = \tilde{q}(I_j)
\]

Birge's Thm: If \(q \) is monotone decreasing then \(\| \tilde{q} - q \|_1 < \varepsilon \)

Corr: \(\tilde{q} \) is \(\varepsilon \)-close to \(q \) and \(\| \tilde{q} - q \|_1 \) is \(O(\varepsilon) \)
Birge’s Thm: If \(q \) is \((\varepsilon\text{-close to})\) monotone decreasing then \(\| \tilde{q} - q \|_1 = O(\varepsilon) \)

Testing algorithm:

- Take \(M \) samples \(S \) of \(q \).
- For each Birge partition \(I_j \):
 \[S_j = S \cap I_j \]
 \[\tilde{\omega}_j = \frac{n_j}{m} \]
- Define \(q^* \) \(\forall i \in I_j \): \(q^*(i) = \frac{\tilde{\omega}_j}{|I_j|} \)
- Use LP on \(\tilde{\omega}_j 's \) to verify that \(q^* \) is \(\varepsilon \)-close to monotone
 - if no, Fail & halt
- Test that \(L_1 \)-dist of \(q + q^* \) is \(< \frac{\varepsilon}{c} \)
 - if no, Fail & halt
 - else, accept
Birge's Thm: If \(q \) is \(\varepsilon \)-close to monotone decreasing then \(\| \tilde{q} - q \|_1 \leq O(\varepsilon) \)

Correctness (high level)

- If \(q \) monotone then \(\tilde{q} \) is monotone
 \((\varepsilon \leq \frac{\varepsilon}{c}) \)
- Since \(\hat{w}_i \)'s are close to \(q(I_j) \) \leftarrow \text{Chernoff argument}
 \(\| \tilde{q} - q^* \|_1 \leq \frac{\varepsilon}{c} \)
- So \(q^* \) is \(\frac{\varepsilon}{c} \)-close to monotone.
- \(\| q - q^* \|_1 \leq 2 \cdot \frac{\varepsilon}{c} \) by \(\Delta \hat{w} \)

Testing algorithm:

- Take \(m \) samples \(S \) of \(q \).
- For each Birge partition \(I_j \):
 \(S_j = S \setminus I_j \)
 \(\hat{w}_j = \frac{|S_j|}{m} \)
- Define \(\tilde{q}^* \) where \(\forall i \in I_j, \tilde{q}^*(i) = \frac{\hat{w}_j}{|I_j|} \)
- Verify that \(\tilde{q}^* \) is \(\varepsilon \) close to monotone (no samples)
- Test that \(L_1 \)-dist of \(q \) and \(q^* \) is \(\leq \frac{\varepsilon}{c} \)

difficulty:
we can distinguish \(\| q - q^* \|_1 = 0 \) in \(O(\sqrt{n}) \) samples
but we don't can't in general distinguish \(\| q - q^* \|_1 < \frac{\varepsilon}{c} \) from \(\| q - q^* \|_1 > \varepsilon \) in \(O(\sqrt{n}) \) samples

Luckily: this is a special case since we know \(\tilde{q} \) is monotone!
Birge's Thm: If \(q \) is \((\varepsilon, \text{close})\)-monotone decreasing then
\[
\| \hat{q} - q \|_1 < O(\varepsilon)
\]

Correctness (high level) to show: \(q \) \(\varepsilon \)-far from monotone \(\Rightarrow \) tester fails whp

Show contrapositive: tester passes whp \(\Rightarrow q \) \(\varepsilon \)-close to monotone.

- Tester passes \(\Rightarrow q^* \frac{\varepsilon}{\varepsilon^2} \)-close to monotone.
- Tester passes \(\Rightarrow \| q - q^* \|_1 < \frac{\varepsilon}{\varepsilon^2} \)
 \(\Rightarrow q \) is \(2\varepsilon \frac{\varepsilon}{\varepsilon^2} \)-close to monotone.

Testing algorithm:

- Take \(m \) samples \(S' \) of \(q \).
- For each Birge partition \(I_j \):
 \[
 S_j = S' \cap I_j,
 \quad \hat{w}_j = \frac{|S_j|}{m}
 \]
- Define \(\hat{q}^* = \sum_{j \in I_j} q^*(x) \frac{\hat{w}_j}{|I_j|} \)
- Verify that \(\hat{q}^* \) is \(\varepsilon \)-close to monotone (no sampled).
- Test that \(L_1 \)-dist of \(q \) and \(\hat{q}^* \) is \(< \frac{\varepsilon}{\varepsilon^2} \).
Birge's Thm: If \(q \) is (\(\varepsilon \)-close)monotone decreasing then \(\| \tilde{q} - q \| < O(\varepsilon) \)

Proof of Birge's Thm

error in partition:

\[
\begin{align*}
\min \quad & \tilde{q} \\
\max \quad & \tilde{q}
\end{align*}
\]

gross upper bnd on error:

\[\leq (\max - \min) \cdot \text{partition length} \]

Type of Intervals:

- Size 1 intervals
- Short intervals
- Long intervals

Total error \[\leq \sum_{j=1}^{l} |I_j| \cdot (\max \text{ prob in } I_j - \min \text{ prob in } I_j) \]

\[= \sum_{\text{size 1 intervals}} 1 \cdot 0 + \sum_{\text{short intervals}} |I_j| \cdot (\max - \min) + \sum_{\text{long intervals}} |I_j| \cdot (\max - \min) \]

\(\Rightarrow \) total wt \(\frac{1}{\varepsilon} \cdot \lambda < 1 \)

\(\Rightarrow \lambda < \varepsilon \)
Bounding \[\sum |I_j| (\text{max-min}) : \]

- Green rectangles = upper bound on error
- Upper bnd on error
- \(\forall i \in I_j, q_i(x) = \frac{q(x)}{|I_j|} \)

Error \[\leq (h_i - h_{i+1}) l_i + (h_{i+1} - h_{i+2}) l_{i+1} + (h_{i+2} - h_{i+3}) l_{i+2} + \ldots \]

- \(\leq h_i l_i + h_{i+1} (l_{i+1} - l_i) + h_{i+2} (l_{i+2} - l_{i+1}) + \ldots \)
- All \(h_i \)'s in this area are \(\leq \varepsilon \)!
- All \(h_i \)'s in this positive \(\approx \varepsilon \cdot l_{i+1} \)

\[\leq \varepsilon \left(l_i + \sum h_i l_{i-1} \right) \]

- Get rid of red rectangles which is upper bounded by \(p \), so sum \(\leq 1 \)

\[\text{area of short intervals} \]

\[\text{Bounding} \]

\[\text{Birge Flattening} \]
\[h_{i-1}, h_{i+1}, h_{i+2}, h_{i+3} \]

\[l_i, l_{i+1}, l_{i+2}, l_{i+3} \]
Slight change of perspective:

if we know \(q \) is monotone, can we learn it?

Yes! use sampling to estimate \(\tilde{q}(I_j)'s \)

Birge's Thm \(\Rightarrow \) can learn monotone distributions
to within \(\epsilon \) \(L_1 \)-error
in \(\Theta \left(\frac{1}{\epsilon^2 \log n} \right) \) samples.
Testing algorithm:

1. Take m samples S' of q.
2. For each Birge partition I_j:
 - $S_j := S' \cap I_j$
 - $n_j := |S_j| \quad \hat{w}_j := |S_j| / m$
3. Define $q^* \forall i \in I_j$ $q^*(i) = \frac{\hat{w}_j}{|I_j|}$
4. Verify that q^* is ε-close to monotone
5. Test that L_1-dist of $q + q^*$ is $< \frac{\varepsilon}{2}$