

Other problems considered '.

Estimate entropy, sopport size Independence? represented well via K-histogram?

monotone hazard rate

Ð

Ð 0

A useful tool:
Given prolection of distributions (via complete description) A
(2) Samples of p such that
$$\exists q \in A$$
 for which dist(pg) is small
A contains good approximation to p
Goal: Dutpot h \in A st. dist(p,h) small
Question:
How many samples needed in terms of 1941 & domain size?
Is this the same as testing closeness, uniformity?
Do lower bounds apply?
MOI guaranteed p close to
String geft

hm

A subtool for comparing two hypotheses :

Actually a bit stronger à (focus on case where zi close) p given via samples h,h2 fully known & p is E'-close to at least one of h,h2 Thm E' S' given Algorithm "choose" takes O((log fi) (t)) samples + outputs hegh , hig such that: $2\epsilon'$ for firm p, unlikely to output his as winner very far $2e^{-m(\epsilon')^2/2}$ or tie (1) If hi more than

10E'-far from P, unlikely to output his as winner (2) If his more than pretty far but not too bad TIE TIE

Algorithm Chose: Input
$$p_1h_1h_3$$

First sime definitions:
 $A = \frac{3}{2} \times [-h_1(x) > h_2(x)]$
 $h_1 = \frac{3}{2} \times [-h_1(x) > h_2(x)]$
 $h_2 = \frac{3}{2} \times [-h_1(x) > h_2(x)]$
 $h_1(x) = \frac{3}{2} \times [-h_1(x) > h_2(x)]$
 $h_2(x) = \frac{3}{2} \times [-h_1(x) > h_2(x)]$
 $h_1(x) = \frac{3}{2} \times [-h_1(x) > h_2(x)]$
 $h_2(x) = \frac{3}{2} \times [-h_1(x) > h_2(x)]$
 $h_1(x) = \frac{3}{2} \times [-h_1(x) > h_2(x)]$
 $h_2(x) = \frac{3}{2} \times [-h_1(x) > h_2(x)]$
 $h_2(x) = \frac{3}{2} \times [-h_1(x) > h_2(x)]$
 $h_1(x) = \frac{3}{2} \times [-h_1(x) > h_2(x)]$
 $h_2(x) = \frac{3}{2} \times [-h_1(x$

Why does it work?	Algorithm Choose:
Why does it work? • h, or h ₂ is E'-close to A (given)	$A = [3x] h(x) > h_2(x)^3$
• If "tie" in step 1, algorithm does right thing	$A = [3 \times] h_{1}(x) > h_{2}(x)^{2}$ $a_{1} = h_{1}(A)$ $a_{2} = h_{2}(A)$ note $ h_{1} - h_{2} _{1} = 2(a_{1} - a_{2})$
• Otherwise reach step 2: $\ h_1 - h_2\ _2 > 10 \varepsilon' (a_1 - a_2 - 5\varepsilon')$	1. if $a_1 - a_2 \leq 5 \epsilon'$ declare "tie" & return h (no samples needed)
$E[\alpha] = \Pr_{x \in p} [x \in A] \equiv p(A)$ assume ((hernoff) that with high prob $[\alpha - E[\alpha]] \leq \frac{\varepsilon^{1}}{2}$	2. draw $m = 2 \log \frac{1}{8}i$ samples $S_1 \dots S_n$ from p $\overline{(\mathcal{E}')^2}$ 3. $\mathcal{A} \leftarrow \frac{1}{m} \frac{2}{2}i S_i \in A \frac{2}{3} $
hi assigns a weight to A ha " an " A	4. if $d > a_1 - \frac{3}{3}\epsilon'$ return h_1 else if $d < a_2 + \frac{3}{2}\epsilon'$ return h_2 else declare "fic" + return h_1
"if p is \mathcal{E}' -close to h, assigns $\mathcal{E}Q_{1} - \mathcal{E}'$ with to A	$\begin{cases} if p=h_1, E[a]=a_1 \\ if p=h_2, E[a]=a_2 \end{cases}$
$4 \chi \ge a_1 - \varepsilon' - \varepsilon'$ return $h_1 whp$	(if $p = h_2$) $E[d] = a_2$ green area = red area = $a_1 - a_2$
if p is ε' -close to h_2 , assign $\leq a_2 + \varepsilon'$ where to A	h, blue area = a
$+ 2 \leq 0_2 + \epsilon' + \epsilon' + \epsilon'$ return $h_2 whp$	blue + red aren = a, A

The cover method - a method for learning distributions def. C is an "E-cover" of d if f smaller set set distributions f distributions + ped s.t. $IIp-qII_1 \leq \varepsilon$ JqeC Why useful? hopefully C much smaller than I I allows to approx I note C not unique pED, which takes Thm I algorithm, given Samples of $p \neq outputs h \in C$ s.t. $1|h-p|1, \leq 6 \in W$ with $prob \geq \frac{q}{10}$ Union bad over CL rather than 191

R

Applications:

Example 2: 2-bucket distributions

now need to specify
$$\chi$$
 and β
so $C = \xi \left(\frac{i}{\kappa}, \frac{i}{\kappa}\right) | \lambda, j \in \xi_{0, \dots, \kappa}$ is $j = \Theta\left(\left(\frac{1}{\epsilon}\right)^{2}\right)$

$$\#$$
 samples is $O\left(\frac{1}{\epsilon^2} \log \frac{1}{\epsilon}\right)$