

Other problems considered '.

Estimate entropy, sopport size Independence? represented well via K-histogram?

monotone hazard rate

Ð

Ð 0

A subtool "for comparing two hypotheses".

The given (1) sample access to p
(a)
$$h_1, h_2$$
 hypothesis distributions (fully known to algorithm)
(3) accuracy parameter \mathcal{E}'_1 confidence parameter \mathcal{S}'
then Algorithm "choose" takes $O(\log(\frac{1}{2})/(\mathcal{E}')^2)$ samples it outputs
 $h \mathcal{E} h_1, h_2 \mathcal{F}$ statisfying:
if one of h_1, h_2 hes $\|h_1 - p\|_1 < \mathcal{E}'$
then with prob $\geq 1 - \mathcal{S}'_1$ output h_1 has $\|h_2 - p\|_1 < lack
is one \mathcal{E} close it one really for f will output \mathcal{E} close \mathcal{F} if \mathcal{E} if \mathcal{E} is the output \mathcal{E} is the sum of \mathcal{E} is the sum of \mathcal{E} is a statisfying in the sum of \mathcal{E} is the sum of \mathcal{E} is the sum of \mathcal{E} is a statisfy in the sum of \mathcal{E} is the sum of \mathcal{E} is a statisfy in the sum of$

Actually a bit stronger o

P given via samples hihz fully Known t E'S given Thm p is E'-clise to at least one of h, h2 Algorithm "choose" takes $O((\log \frac{1}{\epsilon})^2)$ samples to outputs height, high such that. De'-fur from P, unlikely to output his as winner very bad <u>2e-m(E)3/2</u> <u>or</u> tie (1) If he more than 10E'-far from P, unlikely to output (2) If his more than hi as winner not that bud Tright the but workl win Can use $\varepsilon' \approx \frac{\varepsilon}{10}$?

Proof of Subtool:
hith 2 are close
an determine hith 2 close who samples
idea: whoy hi is E'-close to p
if ha is 10E'-close to p but is 12E'-close, ok to "the" or output hi as "where"
else, if ha is not 10E'-close to p but is 12E'-close, ok to "the" or output hi as "where"
else ha is 12E' far from
$$p$$
 + 11E'-far from hi
so samples from p will fall in "difference" between hith a
to ill output hi
where to bok for this difference:
does p assign prob to A more like hi or ha?
(here you use samples)

Algorithm Chose: Input
$$p_1h_1h_a$$

First since definitions:
 $A = 5 \times 1$ $h_1(X) > h_2(X)$
 $a_1 = h_1(A)$
 $a_2 = h_2(A)$
 $a_3 = h_3(A)$
 $a_4 = h_1(A)$
 $a_5 = h_3(A)$
 $a_5 = h_3(A)$
 $a_6 = h_1(A)$
 $a_1 = h_1(A)$
 $a_2 = h_3(A)$
 $a_3 = h_3(A)$
 $a_4 = h_1(A)$
 $a_5 = h_3(A)$
 $a_6 = h_1(A)$
 $a_1 = h_1(A)$
 $a_1 = h_1(A)$
 $a_2 = h_3(A)$
 $a_3 = h_3(A)$
 $a_4 = h_1(A)$
 $a_5 = h_3(A)$
 $a_1 = h_1(A)$
 $a_1 = h_1(A)$
 $a_2 = h_2(A)$
 $a_1 = h_1(A)$
 $a_1 = h_1(A)$
 $a_2 = h_2(A)$
 $a_1 = h_1(A)$
 $a_1 = h_1(A)$
 $a_2 = h_2(A)$
 $a_1 = h_1(A)$
 $a_1 = h_1(A)$
 $a_2 = h_2(A)$
 $a_1 = h_1(A)$
 $a_1 = h_1(A)$
 $a_2 = h_2(A)$
 $a_1 = h_2(A)$
 $a_2 = h_1(A)$
 $a_1 = h_2(A)$
 $a_1 = h_2(A)$
 $a_2 = h_1(A)$
 $a_1 = h_2(A)$
 $a_1 = h_2(A)$
 $a_1 = h_2(A)$
 $a_2 = h_1(A)$
 $a_1 = h_2(A)$
 $a_1 = h_2(A)$
 $a_1 = h_2(A)$
 $a_1 = h_2(A)$
 $a_2 = h_2(A)$
 $a_1 = h_2(A)$
 $a_2 = h_2(A)$
 $a_1 = h_2(A)$

Uhu does it work?	Algorithm Choose:
• h, or h ₂ is \mathcal{E}' -close to A (given)	$A = [3x] h_1(x) > h_2(x)]$ $a_1 = h_1(A)$
. If "tie" in step 1, algorithm does right thing	$a_{2} = h_{2}(A)$ note $ h_{1} - h_{2} _{1} = 2(a_{1} - a_{2})$
• Otherwise reach step 2: $\ h_1 - h_2\ _2 > 10 \varepsilon'$ $(a_1 - a_2 - 5\varepsilon')$	1. $if Q_1 - Q_2 \leq 5 \epsilon' declare "tie" & return h$ (no samples needed)
$E[\alpha] = \Pr_{x \in p} [x \in A] \equiv p(A)$	2. draw $M = 2 \log \frac{1}{8}i$ samples $S_1 \dots S_n$ from p $\overline{(\mathcal{E}')^2}$ 3. $\mathcal{A} \leftarrow 1 S_i S_i \in A S_i$
h, assigns a, weight to A	4. if $d > a_1 - \frac{3}{3}\varepsilon^1$ return h_1 else if $d < a_2 + \frac{3}{3}\varepsilon^1$ return h_2
h_2 h_2 $if p is \varepsilon'-close to h_1, assigns \ge 0, -\varepsilon' weight+o A$	else declare "tic" + return h.
$4 \qquad \chi = \alpha_1 - \varepsilon' - \varepsilon'_2 = \alpha_1 - \frac{3\varepsilon'}{2}$ (return h) whp	$\begin{cases} f = h_1, E = d_1 \\ f = h_2, E [d] = d_2 \end{cases}$
$u u u u u h_2, \qquad \leq q_2 + \epsilon' \text{ weight to } A$	green area = red area = $a_1 - a_2$ h_2 $L_1 = h_1 = green + red$ h_1 $H_2 = area = a_1$
$4 \chi \leq a_2 + \varepsilon' + \varepsilon' \leq a_2 + \frac{3\varepsilon'}{2} \leq a_2 + \frac{3\varepsilon'}{2}$ (return hawhp	blue + red aren = a, A

The cover method - a method for learning distributions def. is an "E-cover" of at it $\forall p \in \mathcal{J} \mathcal{J}$ $\exists q \in \mathcal{C}$ s.t. $llp-q ll, \leq \varepsilon$ 1 smaller set of distributions distributions why useful? hopefully C is much smaller than D, allows us to approximate D note C not unique The \exists algorithm, given $p \in \mathcal{D}$, which takes big $O(\frac{1}{2} \log |C|)$ simples of $p \neq outputs$ he C^{od} improvement: St. $||h-p||, \leq 6 \in$ with $prob \geq \frac{9}{10}$ size of C not $\mathcal{D}|$

The
$$\exists$$
 algorithm, given $p \in p^{2}$, which takes
 $O(\frac{1}{2} \log_{2} |C|)$ simples of p + outputs $h \in C^{2}$
 $O(\frac{1}{2} \log_{2} |C|)$ simples of p + outputs $h \in C^{2}$
 $s.t.$ $||h-p||, \leq 6\varepsilon$ with $prob \geq \frac{q}{10}$
 \underline{Pt}
Since $p \in J$, $\exists q \in C^{2}$ st. $||p-q||, \leq \varepsilon$
(could be more than one)
run "Choose" on p with every pair $q_{1}, q_{2} \in C^{2}$
if best q_{m} doesn't win all of its "matches" then it tes
with others that are not so bad
if q' is $\geq 6\varepsilon - for$ from p , then $\geq 6\varepsilon - \varepsilon - for$ from best q_{oor}
 $\Rightarrow loses to q_{orr}
so all surviving q are $es \varepsilon - close$ to best $q_{oor} \Rightarrow e \delta \varepsilon - close$ to p .
Need all matches fo give correct output - union bound on (a) matches the$

Applications:

Example 2: 2-bucket distributions

now need to specify
$$\lambda$$
 and β
so $C = \xi \left(\frac{i}{\kappa}, \frac{i}{\kappa}\right) | \lambda, j \in \xi_{0, \dots, \kappa}$ is $j = \Theta\left(\left(\frac{1}{\epsilon}\right)^{2}\right)$

$$\#$$
 samples is $O\left(\frac{1}{\epsilon^2} \log \frac{1}{\epsilon}\right)$