Lecture 16:

Hypothesis Testing
Some Problems:

Given samples of p

- $p = q$ (e.g., $q = U_0$)
 - or \(\varepsilon \)-far from q

- p \(\varepsilon \)-close to q
 - or \(\varepsilon \)-far from q

\[\text{Complexity (in terms of } n = |Q|) \]

\[\sqrt{n} \]

\[\frac{n}{\log n} \]

\[n^{\frac{2}{3}} \]

Given samples of q

- $p = q$
 - or \(\varepsilon \)-far from q

- p \(\varepsilon \)-close to q
 - or \(\varepsilon \)-far from q

- p monotone
 - or \(\varepsilon \)-far from monotone

- p \(\varepsilon \)-close to monotone
 - or \(\varepsilon \)-far from monotone

\[n^{\frac{2}{3}} \]

\[\frac{n}{\log n} \]
Other problems considered:

estimate entropy, support size
independence?
represented well via K-histogram?
monotone hazard rate
• • •
A useful tool:

Given: (1) collection of distributions (via complete description) \(\mathcal{H} \)

(2) Samples of \(p \) such that \(\exists q \in \mathcal{H} \) for which \(\text{dist}(pq) \) is small

Goal: Output \(h \in \mathcal{H} \) s.t. \(\text{dist}(p,h) \) small

Question:

How many samples needed in terms of \(|\mathcal{H}| \times \) domain size?

Is this the same as testing closeness, uniformity? Is \(p \) guaranteed to be close to some \(q \)?

Do lower bounds apply? NO!
What we want:

Given h_1, h_2 explicit p via samples

procedure that outputs h_1 that is closer to p

What if both are roughly same distance?

maybe either one is ok?

or maybe not...

More general Goal:

Given set of hypotheses H + p via samples

find $h \in H$ closest to p
Find best hypothesis via "tournament"?

“Winner” advances at each phase

\[h_1, h_2, h_3, h_4, h_5, h_6, \ldots \]

Need stronger guarantee!

\[\text{overall winner} \]

maybe \(p = h_i \)

\[||p - h_2||_1 = 3 \Rightarrow h_2 \ \text{“wins”} \]

Then \[||p - h_3||_1 = 2 \Rightarrow h_3 \ \text{“wins”} \]

Then \[||p - h_5||_1 = 3 \Rightarrow h_5 \ \text{“wins”} \]

\[\ldots \]
won't use simple tournament ← instead compare every pair
will add notion of "tie"

Output hypothesis that wins or ties every match
(hopefully there is one, it is the right one)
A "subtool" for comparing two hypotheses:

Thm. Given (1) sample access to p

(2) h_1, h_2 hypothesis distributions (fully known to algorithm)

(3) accuracy parameter ε', confidence parameter δ'

then Algorithm "choose" takes $O(\log(1/\delta')/(\varepsilon')^2)$ samples and outputs

$h \in \{h_1, h_2\}$ satisfying:

if one of h_1, h_2 has $\|h_i - p\|_1 < \varepsilon'$

then with prob $\geq 1 - \delta'$, output h_j has $\|h_j - p\|_1 < 12\varepsilon'$

i.e. if both h_1, h_2 far, no guarantees

if one ε' close and one really far j will output ε'-close hypothesis

if both ε' close then output $12\varepsilon'$-close hypothesis

i.e. one is ε'-close

other is $\leq 10\varepsilon'$-close

getting kind of complicated just to specify 😐
Actually a bit stronger:

Thm

\[p \] given via samples
\[h_1, h_2 \] fully known + \(p \) is \(\varepsilon' \)-close to at least one of \(h_1, h_2 \)

\(\varepsilon' \) given

Algorithm "choose" takes \(O((\log \frac{1}{\delta})(\frac{1}{\varepsilon})^2) \) samples + outputs \(h \in \{h_1, h_2, h_3\} \) such that:

1. If \(h \) more than \(12\varepsilon' \)-far from \(p \), unlikely to output \(h \) as winner

 \[\text{very bad} \]

 \(\frac{2e^{-m(\varepsilon')^2}}{2e^{-m(\varepsilon')^2}} \)

 or tie

2. If \(h \) more than \(10\varepsilon' \)-far from \(p \), unlikely to output \(h \) as winner

 \[\text{not that bad} \]

 \[\frac{2e^{-m(\varepsilon')^2}}{2e^{-m(\varepsilon')^2}} \]

Can use \(\varepsilon' = \frac{\varepsilon}{10} \)?
Proof of subtool:

idea: why h_1 is ε-close to p

if h_2 is 10ε-close to p, then ok to output "tie" or either h_1 or h_2 as "winner"

else, if h_2 is not 10ε-close to p but is 12ε-close, ok to "tie" or output h_1 as "winner"

else h_2 is 12ε-far from p + 11ε-far from h_1

so samples from p will fall in "difference" between h_1 and h_2,

it will output h_1

h_1 and h_2 are close

you can determine h_1 and h_2 close w/o samples from p

Since you know h_1 and h_2, you know

where to look for this difference:

does p assign prob to A more like h_1 or h_2?

(here you use samples)
Algorithm. Choose: $\text{Input } p, h_1, h_2$

First some definitions:

$$A = \sum \{ x | h_1(x) > h_2(x)^2 \}$$

$$a_1 = h_1(A) \quad \text{← red + blue areas}$$

$$a_2 = h_2(A) \quad \text{← blue area}$$

Note $\|h_1 - h_2\|_1 = 2(a_1 - a_2)$

1. If $a_1 - a_2 \leq \frac{1}{2} \varepsilon$ declare "tie" & return h_1

2. Draw $m = 2 \log \frac{4}{\delta} \varepsilon$ samples $s_1 \ldots s_m$ from p

3. $d = \frac{1}{m} \sum s_i \in A_2 \{ \varepsilon \}$

4. If $d > a_1 - \frac{3}{2} \varepsilon$ return h_1

 Else if $d < a_2 + \frac{3}{2} \varepsilon$ return h_2

 Else declare "tie" & return h_1
Why does it work?

- h_1 or h_2 is ε'-close to A (given)
- If "tie" in step 1:

 $h_1 + h_2$ are $10\varepsilon'$-close (note L_1 dist = 2(a_1-a_2))

 \Rightarrow both are $\leq 11\varepsilon'$-close to A

 So "tie" is ok

- Otherwise reach step 2: $\|h_1 - h_2\|_1 > 10\varepsilon'$ ($a_1 - a_2 > 5\varepsilon'$)

Algorithm

Choose:

$A = \frac{1}{2} \left\{ h_1(A) > h_2(A) \right\}$

$a_i = h_i(A)$

$a_2 = h_2(A)$

note $\|h_1 - h_2\|_1 = 2(a_1 - a_2)$

1. if $a_1 - a_2 \leq 5\varepsilon'$ declare "tie" & return h
 (no samples needed)

2. draw $m = 2 \log \frac{1}{\varepsilon'}$ samples $s_1...s_m$ from p

3. $x \leftarrow \frac{1}{m} \sum s_i e^{A s_i}$

4. if $x > a_1 - \frac{3}{2} \varepsilon'$ return h_1

 else if $x < a_2 + \frac{3}{2} \varepsilon'$ return h_2

 else declare "tie" & return h_i

- if $p = h_1$, $E[x] = a_1$
 - if $p = h_2$, $E[x] = a_2$

green area = red area = $a_1 - a_2$
L_1 dist = green + red
blue area = a_2
blue + red area = a_1
Algorithm: Choose:

\[\begin{align*}
A &= \frac{2}{3} \times \left(h(x) > h_2(x) \right) \\
a_1 &= h_1(A) \\
a_2 &= h_2(A) \\
\text{note } ||h_1-h_2||_1 &= 2(a_1-a_2)
\end{align*} \]

1. if \(a_1 = a_2 \leq 5 \varepsilon' \) declare "tie" & return \(h \) (no samples needed)

2. draw \(m = 2 \log \frac{1}{\varepsilon'} \) samples \(s_1, \ldots, s_m \) from \(p \) [\(\varepsilon' \)]

3. \(\alpha \leftarrow 1 \cdot \frac{1}{m} \left\lvert \{ s \in S \mid s \in A \} \right\rvert \)

4. if \(\alpha > a_1 - \frac{3}{2} \varepsilon' \) return \(h_1 \)

else if \(\alpha < a_2 + \frac{3}{2} \varepsilon' \) return \(h_2 \)

else declare "tie" & return \(h \)

- if \(p = h_1 \), \(\mathbb{E}[\alpha] = a_1 \)
- if \(p = h_2 \), \(\mathbb{E}[\alpha] = a_2 \)

Why does it work?

- \(h_1 \) or \(h_2 \) is \(\varepsilon' \)-close to \(A \) (given)

- If "tie" in step 1, algorithm does right thing

- Otherwise reach step 2: \(||h_1-h_2||_1 > 10 \varepsilon' \) (\(a_1-a_2 > 5 \varepsilon' \))

\[
\mathbb{E}[\alpha] = \Pr_{x \in p} \left[x \in A \right] = p(A)
\]

Assume (Chernoff) that with high prob \(|\alpha - \mathbb{E}[\alpha]| \leq \frac{\varepsilon'}{2} \)

\(h_1 \) assigns \(a_1 \) weight to \(A \)

\(h_2 \) " " " " " \(A \)

if \(p \) is \(\varepsilon' \)-close to \(h_1 \), assigns \(\geq a_1 - \varepsilon' \) weight to \(A \)

\[\alpha \geq a_1 - \frac{\varepsilon'}{2} = a_1 - \frac{3 \varepsilon'}{2} \]

" " " " " \(h_2 \), " " " " " \(\leq a_2 + \varepsilon' \) weight to \(A \)

\[\alpha \leq a_2 + \frac{\varepsilon'}{2} \leq a_2 + \frac{3 \varepsilon'}{2} \]

return \(h_2 \) etc
The cover method - a method for learning distributions

```
def C is an "ε-cover" of D if
∀ p ∈ D ⇒ ∃ q ∈ C s.t. ||p - q||_1 ≤ ε
smaller set of distributions
```

Why useful?

Hopeful C is much smaller than D, allows us to approximate D

Note C not unique

Thm \exists algorithm, given $p \in D$, which takes

$O\left(\frac{1}{\epsilon^2 \log |C|}\right)$ samples of p + outputs $h \in C$

s.t. $||h - p||_1 \leq 6\epsilon$ with prob $\geq \frac{9}{10}$
Thm 3 algorithm, given \(\phi \in \mathcal{D} \), which takes

\[O\left(\frac{1}{\varepsilon^2 \log |C|} \right) \]

samples of \(p \) + outputs \(h \in \mathbb{C}^n \)

s.t. \(\|h - p\|_1 \leq 6\varepsilon \) with prob \(\geq \frac{9}{10} \)

Pf.

Since \(p \in \mathcal{D} \), \(\exists q \in \mathbb{C}^n \) s.t. \(\|p - q\|_1 \leq \varepsilon \)

(could be more than one)

run “Choose” on \(p \) with every pair \(q_1, q_2 \in \mathbb{C}^n \)

if \(q_{\text{best}} \) doesn’t win all of its “matches” then it ties

with others that are not so bad

if \(q' \) is \(\geq 6\varepsilon \)-far from \(p \), then \(\geq (6\varepsilon - \varepsilon) = 5\varepsilon \)-far from \(q_{\text{best}} \)

\(\Rightarrow \) loses to \(q_{\text{best}} \)

So all surviving \(q \) are \(\leq 5\varepsilon \)-close to \(q_{\text{best}} \) \(\Rightarrow \) \(\leq 6\varepsilon \)-close to \(p \).

Need all matches to give correct output — union bound on \(|C| \) matches.
Applications:

Example 1: learning distribution of a coin

domain = \{0,1\}

need to learn bias

Here \(D = \mathbb{R} \)

if use \(C = \{0, \frac{1}{k}, \frac{2}{k}, \ldots, \frac{k-1}{k}, 1\} \)

then 4 bias \(p \), let \(\frac{1}{k} \leq p \leq \frac{k+1}{k} \)

then picking \(\hat{p} = \frac{i}{k} \) gives \(\|p - \hat{p}\|_1 \leq \frac{2}{k} \)

so using \(k = \Theta(\frac{1}{\varepsilon}) \) gives \(\|p - \hat{p}\|_1 \leq \varepsilon \)

\(|C| = k+1 \) # samples needed by cover method is \(\Theta(\frac{1}{\varepsilon^2} \log \frac{1}{\varepsilon}) \)
Example 2: 2-bucket distributions

now need to specify \(\alpha \) and \(\beta \)

so \(C = \sum (i, j) | i, j \in \mathbb{Z}, ... , n \) \n
\(|C| = \Theta((\frac{1}{\varepsilon})^2) \)

\# samples is \(O(\frac{1}{\varepsilon^2} \log \frac{1}{\varepsilon}) \)

Example 3: monotone distributions

Birge \(\Rightarrow \) \(C = \sum (\frac{i}{k}, ... , \frac{i(\log n)}{\varepsilon k}) | i, j, ... \in 0...k \) \n
\(|C| = \Theta\left(\frac{1}{\varepsilon^3 \log n \log \frac{1}{\varepsilon}}\right) \Rightarrow \# \text{ samples is } O(\frac{1}{\varepsilon^3 \log n \log \frac{1}{\varepsilon}}) \)