Lecture 18:

Lower bound techniques

How to prove lower bounds?
easy? sublinear time algorithms see very little of input.
difficult? sublinear time algorithms are usually randomized

How to prove lower bounds?
easy? sublinear time algorithms see very little of input.
difficult? Sublinear time algorithms are usually randomized

Useful lower bound tool:
average case Yo's Prinkiple: Given distribution D on union of lower band "positive" (Yes, PASs) instances + "negative" (No, FAlL) inputs, \Downarrow such that any deterministic algorithm of query randomized worst complexity $\leqslant t$ is incorrect with prob $\geq 1 / 3$ on
case labe inputs chosen from D, then t is a lower bound on randomized query complexity.
(Proof omitted) (see Wiktredin)

Game theoretic view:

Alice selects deterministic alg $A\}$ payoff $=\operatorname{cost}$ of $A(x)$
Bob selects input x Say (st of $A(x)$
A selects randomized algorithm \Leftrightarrow A picks random $\begin{gathered}\text { determin istric algonnth } \\ \text { (includes. }\end{gathered}$ (includes. rumba bits)

Non Neuman's minimax \Rightarrow when A randomized,
a randomised Bob can do just as well
distribution on inputs when A
as weterministic
\Rightarrow if wont to shaw lib. need only show a "bad" distribution on inputs that is "hard" for any deterministic algorithm

Example application of Yo's method:

PP AL $=\left\{w \mid w\right.$ is $\left.w=V V^{R} u u^{k}\right\}$ concatenation of 2

Note that testing $P A L=\left\{\omega \mid \omega=v v^{k}\right\}$ is "easy" pick random i, if $w_{i} \# w_{n-i}$ FALL

Can test 2PAL in $O(\sqrt{n})$ time can you do better?

Thm any property tester for 2PAL needs \sqrt{n} queries
e.g. if at satisfies $\quad \forall x \in 2 P A L, \operatorname{Pr}[A(x)=\operatorname{PASS}] \geq 2 / 3$

* $\forall x$ fur from 2PAL, $\operatorname{Pr}[A(x)=F A \mid C] \geqslant 2 / 3$
then A makes $\Omega(\sqrt{n})$ queries

Pf.
Plan: give distribution on inputs that is hard for all deterministic algorithms using $O(\sqrt{n})$ queries.

$$
V_{\text {lao }} \Rightarrow \text { rundmized } 1, b \text {, of } \Omega(\sqrt{n})
$$

Distribution on "Fail" inputs:
$F=$ random string of distance $\geq \varepsilon n$ from $2 P A L$

Distribution on "Pass" inputs: (clog assume $6 / n$)

$$
P=\left\{\left.\begin{array}{lll}
1 . & \text { pick } & k \in_{R}\left[\frac{n}{6}+1, \frac{n}{3}\right] \\
2 . & \text { pick } & \text { random } v, u \\
3 . & \text { output } v v^{R} u u^{R} & \text { s.t. }
\end{array}| || |=k \right\rvert\,=\frac{n-k}{2}\right.
$$

note: some strings can be generated by multiple K 'S egg. $\quad \| 1 \ldots 1$

Bad Distribution:

$$
A=\left\{\begin{array}{lll}
\text { flip coin } & \\
H: & \text { output } & \text { according to } \\
\tau: & \text { " } & \text { " } \\
T: & &
\end{array}\right.
$$

Assume deterministic algorithm A

each in put follows exactly one brunch reaches leaf, which is hopefully labelled by correct answer

- depth of decisiontree is t
- wog assume all leaves have depth t (complete binary tree)
- 2^{t} root-leaf paths
ζ we can calculate prob of reaching each leaf given $\left\{\begin{array}{c}\text { input dist } D \\ F_{p}\end{array}\right.$

Suppose $w \in_{R}\left\{0,13^{n}: \operatorname{Pr}[w\right.$ reaches leaf $l]=2^{-t}$

For each leaf l :

$$
\begin{aligned}
& E^{-}(l)=\{\omega^{\text {ingots }} \in\{9,1\}^{n} \text { st. } \underbrace{\operatorname{dist}(\omega, 2 P A L)}_{\omega \text { should Foul }} \geq \varepsilon n+\omega \text { reaches leaf } l\} \\
& E^{+}(l)=\{\begin{array}{c}
\text { inputs } \\
w
\end{array}\{\left\{0_{1} 1\right\}^{n} \underbrace{\cap \text { PAsS }}_{w \text { should }} \text { oPAL }+w \text { races leaf } l\}
\end{aligned}
$$

Total error of A on D :

For each leaf l :

$$
E^{-}(l)=\{\omega^{\text {inputs }} \in\{a 1\}^{n} \text { st. } \underbrace{\operatorname{dist}(\omega, 2 P A L) \geq \varepsilon n}_{\omega \text { should FAlL }}+\omega \text { reaches leaf } l\}
$$

$E^{+}(l)=\left\{\begin{array}{c}\text { inputs } \\ w \in\{0,1\}^{n} \underbrace{\cap \text { OPAL }}_{w \text { should } P A S S}+w \text { racks leaf } l\}\end{array}\right.$

Total error of A on D :

Claim 1 if $t=o(n), \forall l$ at depth $t \quad$ so FAIL inputs

$$
\begin{aligned}
& \text { if } t=o(n), \quad \forall l \text { at depth } t \quad\left\{\begin{array}{l}
\text { so FAlL inputs all leaves } \\
\text { show up at all } \\
\operatorname{Pr}\left[w \in E^{-}(l)\right] \geq\left(\frac{1}{2}-o(1)\right) \\
\operatorname{P}^{-t}
\end{array}\right.
\end{aligned}
$$

$$
\underbrace{\left(\frac{1}{2}-0(1)\right)}_{\text {almost }} 2
$$

Claim 2 if $t=O(\sqrt{n}), \forall l$ at depth $t \quad$ so PASS inputs gl leaves

$$
\operatorname{Pr}_{b}\left[w \in E^{+}(l)\right] \geq(\underbrace{\left(\frac{1}{2}-6(1)\right) 2^{-t}}\} \text { show up at all }
$$

But each leaf has to choose a label so will be wring on almost 1/2 inputs that reach it

Totulerror of A on D :

$$
\begin{aligned}
&=\sum_{l}\left(\frac{1}{2}-0(1)\right) 2^{-t}+\sum_{l}\left(\frac{1}{2}-0(1)\right) 2^{-t} \geq \frac{1}{2}-0(1) \gg \frac{1}{3} \\
& \quad \text { parsing } \\
& \text { failing }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{l \text { passing }} \operatorname{Pr}_{w \in D}\left[w \in E^{-}(l)\right] \\
& +\sum_{\substack{f_{1} \\
\text { facing }}}^{\operatorname{Pr}_{w \in D}\left[w \in E^{+}(l)\right]} \begin{array}{c}
\uparrow \\
\text { hold airs }
\end{array}
\end{aligned}
$$

Claim 1 if $t=o(n), \forall l$ at depth t

$$
\left.\operatorname{Pr}_{D}\left[w \in E^{-}(l)\right] \geq\left(\frac{1}{2}-0(1)\right) 2^{-t}\right\}
$$

Proof:
Plan:

- F is close to U
- U is uniformly distributed at each leaf (each loon has random bit, so go left/right with equal probability)

$$
\Rightarrow \operatorname{Pr}_{w \in u}\left[w \in E^{-}(l)\right]=\frac{2^{n-t}}{\left.E^{+}(l)\right]}=2^{-t}
$$

But how much can distribution on leaves change using F ? $\left|2 P A L_{n}\right| \leq \frac{n}{2} \cdot 2^{n / 2} \xi$ choice of u, v choice:
\# words at dist $\leq \varepsilon n$ from $\left.2 P A L \leq\left(2^{n / 2} \cdot \frac{n}{2}\right) \sum_{i=0}^{\sum n}\binom{n}{i} \leq 2^{n / 2+2 \varepsilon \log \frac{1}{2} \cdot n}\right\}$ very few
so $E^{-}(l) \geq 2^{n-t}-2^{\frac{n}{2}+2 \varepsilon \log \frac{1}{2} \cdot n}=(1-0(1)) 2^{n-t}$ since $t<\frac{n}{2}$

so

$$
\begin{aligned}
\operatorname{Pr}_{D}\left[w \in E^{-}(l)\right] & \geq \frac{1}{2} \cdot \operatorname{Pr}_{F}\left[w \in E^{-}(l)\right] \\
& =\frac{1}{2} \frac{\left|E^{-}(l)\right|}{2^{n}} \geq\left(\frac{1}{2}-o(1)\right) 2^{-t}
\end{aligned}
$$

Claim 2 if $t=O(\sqrt{n}), \forall l$ at depth $t \zeta$

$$
\operatorname{Pr}_{b}\left[w \in E^{+}(l)\right] \geq\left(\frac{1}{2}-6(1)\right) 2^{-t}
$$

$F=$ random string of distance
so "PASs" inputs
Proof Plan for every fixed show up at all leaves
set of $o(\sqrt{n})$ queries, lots
of strings in 2PAL follow the path
how many strings agree with leaf l ? 2^{n-t} how many n-bit strings in 2PAL agree with leaf l ?

$$
\geq 2^{\frac{n}{2}-?_{2}}-? ?
$$

difficulty:

Fix $k=10 ;$ shard see some value at

$$
\begin{gathered}
1,10 \\
2,9 \\
3,8 \\
\vdots
\end{gathered}
$$

Lots of dependencies
Maybe no string in 2PAL follows the path?
but k is picked randomly! in $\left[\frac{n}{6}+1, \ldots, \frac{n}{3}\right]$
hope: paths that pair up dependent queries for one k will do badly on most others?

Consider leaf l,
$Q_{l} \leftarrow$ indices queried along way
pair $q_{1} q_{2} \in Q_{l}$, at most 2 choices of

$$
\frac{13,6^{2} 3}{(10)}
$$

 K "pair" them: 1?
if p picked k that pairs $q_{1}+q_{2}$ then all bets off \Rightarrow \# choices of k st. $\stackrel{\text { no }}{=} \stackrel{\text { pair }}{=}$ in $Q_{l} \underbrace{\text { symmetric }}_{\text {good } k}$ around k or $\frac{n}{2}+k$
$\left.\geq \frac{n}{6}-(t)=(1)\right) \xrightarrow[n]{n}$

$$
\begin{gathered}
\geqslant \frac{n}{6}-2 \cdot\binom{t}{2}=(1-0(1)) \frac{n}{6} \\
1 ?
\end{gathered}
$$

Claim 2 if $t=O(\sqrt{n}), \forall l$ at depth $t \zeta$

$$
\operatorname{Pr}_{b}\left[w \in E^{+}(l)\right] \geq\left(\frac{1}{2}-6(1)\right) 2^{-t}
$$

$F=$ random string of distance so "PASs" inputs
Proof show up at all leaves
Plan for every fixed
set of $o(\sqrt{n})$ queries, lots
of strings in 2PAL follow the path
how many strings agree with leaf l ? 2^{n-t} how many n-bit strings in 2PAL agree with leaf l ?

$$
\geq 2 \frac{n-t}{2}-? ? ?
$$

\# choices of k st. no pain in Q_{l} symmetric around k or $\frac{n}{2}+k$

$$
\geq \frac{n}{6}-2\binom{t}{2}=(1-\sigma(1))\left(\frac{n}{6}\right) \quad \underbrace{}_{\text {Good "k }}
$$

So $\operatorname{Pr}_{p}\left[w \in E^{+}(l)\right]=\sum_{\omega} \sum_{k} \underbrace{\operatorname{Pr}_{p}[w / k]}_{2} \cdot \underbrace{\operatorname{Pr}}_{\left(n^{-n / 6}\right)^{-1}}\left[\begin{array}{c}\text { choose } k] \\ w \in E^{+}(l)\end{array}\right.$

