Lecture 19
Local Computation Algorithms:
Maximal Independent Set

Maximal Independent St:
not. def $U \leq V$ is a "Maximal Independent Set" (MIS) if
(1) $\forall u_{1}, u_{2} \in U, \quad\left(u_{1}, u_{2}\right) \& E$
"independent"
not Necoryble
(2) $\exists w \in V \backslash u$ st. $U v\{w\}$ is independent "maximal"

Today's assumption:
$G$ has max degree $d$

Note: His com be solved va greedy (not Necomplete)

Distributed Algorithm for MIS:
"Luby's Algorithm" (actually a variant)

- $M I S \leftarrow \varphi$
- all nodes set to "live"

Maximal Indepordenet St:
def $u \leq v$ is a "Maximal Independent Set" (HLS) if
(1) $\forall u_{1}, u_{2} \in U, \quad\left(u_{1}, u_{2}\right) \& E$
(2) $\exists w \in V \backslash u$ st. $u v\{w\}$ is independent

- repeat $k$ times in parallel:
- $\forall$ nodes $V$, color self "red" with prob $=\frac{1}{2 d}$, else "blue". Send color to all noes.
- If $v$ colors self "red" + no other nor of $V$ colors self red then red $\approx$ volunteer to be
- add v to MIS inNs"
- remove $v+$ all nbrs from graph (set to "dead")
(for purposes of analyses, continue to select selves after die, but daunt do anything else)

The $\operatorname{Pr}[\#$ rounds til graph empty $\geq 80 \log n] \leq \frac{1}{n}$
Corr $E[\#$ rounds $]$ is $O(d \log n) \Leftarrow$ can improve!
$M L S \leftarrow \varphi$
Main Lemma
$\operatorname{Pr}[v$ live tadded to MIS in round $\left.] \geq \frac{1}{4 d}\right\}_{\text {then }}^{v} \begin{aligned} & \text { "dies" }\end{aligned}$
Proof
$\operatorname{Pr}[v$ colors self red $]=\frac{1}{2 d}$

$$
\begin{array}{rll}
\operatorname{Pr}[\text { any } w \in N(v) \text { colors self red }] & \leq \sum_{w \in N(v)} \frac{1}{2 d} & \text { (union bund) } \\
& \leq 1 / 2 & \text { (bound on degree) }
\end{array}
$$

$\therefore \operatorname{Pr}[v$ colors self red + no other nor colors self red $] \geq \frac{1}{2 d}\left(1-\frac{1}{2}\right)=\frac{1}{4 d}$
$\Rightarrow$ Corr $\operatorname{Pr}\left[v\right.$ live after $4 k^{\prime} d$ rounds $] \leq\left(1-\frac{1}{4 d}\right)^{4 K^{\prime} d}=e^{-k^{\prime}}$

Setting $K$ :
if $K=O(d \log n), \operatorname{Pr}[v$ live at end $] \leq e^{-\sigma(\log n)}=\frac{1}{n^{c}}$
(can do better) rounds

See slides for
Local Computation Algorithm (LCA) model

Problem when sequentially simulate $k$-round algorithm

$$
\begin{aligned}
& \text { get } d^{k \in \text { _degree complexity }} \\
& k=\sigma(\log n) \Rightarrow d^{k} \quad \Rightarrow \text { not sublinear }
\end{aligned}
$$

What to do? ron fewer rounds
many nodes will not be decided yet $\leftarrow$ is it ok?

Local Compotation Algonthm to Compute Luby's answer: "Lobs

- Run Luby with $K=O(d \log d)$ rounds at end, each node $v$ is one of:

Luby: set $K=O(d \log d)$

- $M I S \leftarrow \varphi$
- all nodes set to "live"
- repast $k$ times in parallel:
- $\forall$ nodes V, color self "red" with prob $\geq \frac{1}{2 d}$, else "blue". Sad color tall nos
-If $V$ cobs self "red" + no other nor of $V$ colors self red then
- add $v$ to MSs
- remove $v+$ all nbs from graph (set to "dead")
$\left\{\begin{array}{l}\text { live } \\ \text { in MIS } \leftarrow \text { set self to red }+ \text { no nbrs red } \\ \text { n taken out by nor who is in }\end{array}\right.$ not in MIS $\leftarrow$ taken out by nor who is in MIS

- Use "Parnas - Ron" reduction:
simulate v's view of computation in sequential manner:
- determine whether $v$ is live/inlnotin

$$
d^{k}=d^{o(d \log d)} \text { queries }
$$

- if $v$ is in/notin then done else $v$ is alive $\leftarrow$ what do we do now?

Questions:
What is prob $v$ is alive?
How are live nodes distributed after O(dlogd) rounds?

lots of live, few dead?
NO
$\operatorname{Pr}[v$ survives $O(d \log d)$ rounds $]$

$$
\leq e^{-0(\log d)} \leq \frac{1}{d^{c}}
$$

Most "die"

few live bot clumped together?

Surviving nodes. will be in small connected compronts

Surviving nodes will be in small connected components
"Shuttered".


This relies heavily on degree bound of graph

- \#conn comp subgraphs small
- Survival of components $\approx$ independent

Lube:
"Lubystatus" Lube with $k=O(d \log d)$ :
given $v$, is it:

$$
\left\{\begin{array}{l}
\text { live } \\
\text { in MIS } \leftarrow \text { set sift to red }+ \text { no nbs did } \\
\text { not inMIS } \leftarrow \text { taken out by nor }
\end{array}\right.
$$

- MI S $\leftarrow \varphi$
- all nodes set to "live"
- report $k$ times in parallel:

- remove $v+$ all ness from graph (set to "dead")

LCA for MIS(v):
$\frac{\text { Runtime }}{d^{\text {od log } \alpha)}}$


- else, (I) do BFS to find v's connected component of live nodes
(2) Compute lexicograptrically $1^{\text {st }}$ MAS $M^{\prime}$ for that connected component (consistent with nbrs
are decided)
(3) Output whether $v$ in lout of M' component
what is this?

Bounding size of connected components:
(aim After $O(d \log d)$ rounds, connected components of survivors of sire $\leq O($ poly $(d) \log n)$ $\Rightarrow$ runtime of above procedure is $\sim d^{o(d \log d)} \times$ poly $\log (d) \cdot \log n$

Main difficulty: survival of $v+$ neighbors not independent

Bounding survivors:
$A_{v}= \begin{cases}1 & \text { if } v \text { survives all rounds } \\ 0 & 0 . \omega .\end{cases}$
$B_{v}=\left\{\begin{array}{lc}1 & \text { if } \nexists \text { round sit. } v \text { colors self t } \\ 0 & 0, w . \\ \text { no weN (v) }\end{array}\right.$

Luby:

$$
-M S \leftarrow \varphi
$$

- all nodes set to "live"
- repay $k$ times in parallel:
- $\forall$ nodes $V$, color self "rad" with prob $\geq \frac{1}{2 d}$, ese "blue". Sad color tall noses
- If $v$ colors self "red" + no other nor of $v$ colors self red then
- add $v$ to MIS
- remove $v+$ all noes from graph (set to "dead")
might not mean $v$ alive
since at sone pt some nor $w$ of $v$ could hove gone into MIS a removed $v$

$$
\operatorname{Pr}\left[B_{v}=1\right] \leq \underset{\substack{\text { prob survive } \\ \text { ore round }}}{\left(1-\frac{1}{4 d}\right)^{c d \text { log }} \leq \frac{1}{8 d^{3}}} \text { for } c \geq 20
$$

Bounding size of connected components:

$$
A_{v}= \begin{cases}1 & \text { if } v \text { survives all rounds } \\ 0 & 0 . w .\end{cases}
$$

$$
B_{v}=\left\{\begin{array}{ccc}
1 & \text { if } \nexists \text { round sit. } v \text { colors self t } \\
0 & 0, w . & \text { no wetN(r)} \\
\text { colors self }
\end{array}\right\}
$$

Note: $A_{V}=1 \Rightarrow B_{V}=1$

Lube:

$$
-\mu 1 s \in \varphi
$$

- all nodes set to "live"
- repay $k$ times in parallel:
- $\forall$ nodes $V$, color self "rad" with prob $\geq \frac{1}{2 d}$, else "blue". Sad color tall nobs
- If $v$ colors self "rad" + no ot here nor of $v$ colors self ed then
- add $v$ to MIS
- remove $v+$ all nbs from graph (set to "dead")
might not mean that $v \in M I S$
ecg. if $v$ died due to nor being put in HIS
eg, $u$ survives $\Rightarrow \nRightarrow$ round sit. $v$ colors self + no $w \in N(v)$ colors self
we care about $A_{v}^{\prime}$ ', but $B_{v}^{\prime} s$ have nice independence properties


Bounding size of connected components:
(laim After $O(d \log d)$ rounds, connected components of survivors of sire $\leq O^{\prime \prime}($ poly $(d) \log n)$
$\Rightarrow$ can find whole component via BFS
"brute force"

Proof idea:

- any large conn component has lots of nodes $Z$ do we that are independent (distance $\geq 3$ )
- these indep nodes unlikely to simultaneously survive union but sets of

(laim After $O(d \log d)$ rounds, connected components of survivors of size $\leq O(p r l y(d) \cdot \log n)$ Proof

Let $H \longleftarrow$ graph st. nodes $\sim B_{v}$

$$
\operatorname{deg}(H) \leq d^{3} \quad \text { edges } \sim B_{v}+B_{w} \underbrace{\text { distance } 3}_{\text {represent indep events }} \text { in } G
$$



G


Observe: \# components in $H$ of size $\omega$

$$
\leq
$$

\# size $\omega$ subtrees in H
Why? map each component $C$ in $H$ to arbitrary spuming tree of $C$ mapping is 1.1 bot could have may spermine we are good at counting subfrees

How many subtrees in a degree bounded graph?
KnownThm $\pm$ non isomorphic trees on $\omega$ nodes $\leq 4^{\omega} \longleftarrow$ ignores "names" of nodes (just shape)

$$
\overbrace{0} \ldots \text { Lust shape) }
$$

Corr $\#$ size $\omega$ subtrees in $N$-node graph of degree $\leq D \longleftarrow \begin{gathered}\text { consider now s } \\ \text { of nodes } \\ \text { root }\end{gathered}$ is $\leq N \cdot 4^{\omega} \cdot D^{\omega}=N(Y D)^{\omega}$
why?

- choose rot in H

$$
\frac{\# \text { Choices }}{N}
$$

- Choose size w tree shape from known the

$$
4^{w}
$$

- choose placement in H | D choices for $1^{\text {st }}$ child |
| :--- |
| " $"$ |
| $2^{\text {nd }}$ | total $\mathbb{H}$ choice: $N \cdot Y^{\omega} \cdot D^{\omega}$

(laim After $O(d \log d)$ rounds, connected components of survivors of sire $\leq O^{\prime}($ poly $(d) \mid \log n)$
Proof
Let $H \longleftarrow$ graph st. nodes $\sim B_{v}$

$$
\operatorname{deg}(H) \leq d^{3}
$$

$$
\text { edges } \sim B_{v}+B_{w} \underbrace{\text { distance }} 3 \text { in } G
$$

represent independent events!!

- \# components in H of size $\omega \leq$ \# size $\omega$ subtrees $\leq H \cdot\left(4 d^{3}\right)^{w}$
- $\operatorname{Pr}[$ node $u$ survives $] \leq \frac{1}{8 d^{3}}$
$\operatorname{Pr}[$ component of size $\omega$ in $H$ survives $] \leq\left(\frac{1}{8 d^{3}}\right)^{w}$ since indep
$\operatorname{Pr}$ [any component of size $w$ survives in $H$ ] $n\left(4 d^{3}\right)^{w} \cdot\left(\frac{1}{8 d^{3}}\right)^{w}=\frac{n}{2^{w}}$
$\Rightarrow$ for $\omega=\Omega(\log n)$,

$$
\operatorname{Pr}\left[\exists \text { surviving component of size } \frac{\text { win } H}{\text { what }}\right] \leq \frac{1}{n}
$$

Component of size $\leq w$ in $t 1 \Rightarrow$
component of size $s w \cdot d^{2}$ in $G$
So unlikely to have any surviving component of size $\Omega\left(d^{2} \log n\right)$

