Lecture 3:

- Estimate average degree
- recap
- 2-approximation
- 1+ - approximation

Estimating the average degree of a graph
def Average degree $\bar{d}=\frac{\sum_{u<v} d(u)}{n}$

Assume: G simple (no parallel edges, self-loops)
$\Omega(n)$ edges (not "ultr a-sparse")
Representation via adj list + degrees:

- degree queries: on v return $d(v)$
- neighbor queries: on $\begin{aligned} & \left(v_{j}\right) \text { return } j^{\text {th }} \\ & n b r \text { of } v\end{aligned}$

Naive sampling:
Pick O(??) sample nodes $V_{1} \cdot V_{S}$
output ave degree of sample:

$$
\frac{1}{s} \sum_{i} d\left(v_{i}\right)
$$

Straight forward Cherroff/Hocffding needs $\Omega(n)$ samples
lower bound?

not a possible degree sequence!!

$$
\left.\begin{array}{|l|l|l|l|l|l|}
\hline n-1 & 1 & 1 & 1 & 1 & 1
\end{array} \right\rvert\,
$$

Some lower bounds:
"ultrasparse" case:
0 edges
vs. $\quad 1$ edge
need $\quad \Omega(n)$ queries to distinguish
\Rightarrow multiplicative approx needs $\Omega(n)$
ave $d e y \geq 2$:

$$
n \text {-cycle } \quad \bar{d}=2
$$

Vs.

$$
\begin{aligned}
& n-c \cdot \sqrt{n} \text { cycle } \quad d \approx 2+c^{2} \\
& +c \sqrt{n} \text {-clique }
\end{aligned}
$$

need $\Omega\left(n^{1 / 2}\right)$ queries to find
Clique node clique node

Algorithm idea:
group nodes of similar degrees estimate average whin each group

Why does this help?
recall Chernoff:

$$
\begin{aligned}
& x_{1} \cdots x_{r} \quad \text { ind } x_{i} \in[0,1] \\
& S= \sum_{i=1}^{r} x_{i} \quad p=E\left[x_{i}\right]=E[s] / r
\end{aligned}
$$

Then $\operatorname{Pr}\left[\left|\frac{s}{r}-p\right| \geq \delta_{p}\right] \geq e$
$\Rightarrow \quad r$ needs to be

$$
\Omega\left(\frac{1}{p \delta^{2}}\right)
$$

let's assume δ is a constant
but if $b \leq \operatorname{deg}(i) \leq(1+\varepsilon) b x_{i}$ needs to be in $[0,1]$ can set $X_{i} \leftarrow \frac{\operatorname{deg}(i)}{(1+\varepsilon) b} \quad$ so if $X_{i} \leftarrow \frac{\operatorname{deg}(i)}{n}$
then p can be as small as $\frac{1}{n}$
then $p \geq \frac{1}{1+\varepsilon} \quad(\Rightarrow r$ needs to be $\Omega(1 / p)=\Omega(n)$
\Rightarrow r needs to be only $\Omega(1)$. Much better!!!!
t each group has bonded variance

- doesut work for arbitrary H's why here?

Bracketing:
set parameters $\beta=\frac{\varepsilon}{c}$

$$
\begin{gathered}
t=O(\log n / \varepsilon) \quad \text { buckets } \\
B_{i}=\left\{v \mid(1+\beta)^{i-1}<d(v) \leq(1+\beta)^{i}\right\} \\
\text { for } \quad i \in\{0, \cdots,(t-1)\}
\end{gathered}
$$

(can add bucket for dey 0 nodes or

* assume none)
note:
total degree of nodes in B_{i}

$$
(1+\beta)^{i-1}\left|B_{i}\right| \leq d_{B_{i}} \leq(1+\beta)^{i}\left|B_{i}\right|
$$

total degree of graph:

$$
\sum_{i}(1+\beta)^{i-1}\left|B_{i}\right| \leq d_{\text {total }} \leq \sum_{i}(1+\beta)^{i}\left|B_{i}\right|
$$

First idea for algorithm:
(i) ${ }^{\prime}$ if sample j $G_{j}^{(i)}=\left\{\begin{array}{l}\text { it sample } \\ f_{u} l l \text { s in bucket } \\ i \\ 0 \\ 0, w .\end{array}\right.$

- Take sample S of nodes
- $S_{i} \leftarrow S \wedge B_{i}$
(samples that fall in th bucket use degree queries to
- estimate $\left|B_{i}\right|$:

$$
\begin{aligned}
& \text { note: } \begin{aligned}
E\left[p_{i}\right] & =E\left[\frac{\left|s_{i}\right|}{|s|}\right]=\frac{E\left[\begin{array}{ll}
|s| & \delta_{i=1}^{(i)} \\
|s|
\end{array}\right]}{} \\
& =\frac{|s|}{|s|} \cdot \frac{\left|B_{i}\right|}{n}
\end{aligned}
\end{aligned}
$$

- Output $\sum_{i} \rho_{i}(1+\beta)^{i-1} \leftarrow$ undercounting

Problem:
$\underbrace{\text { prox }}_{\text {if } i \text { is } s t .\left|s_{i}\right| \text { small, will need lots of }}$ tHese likely come from B_{i} s.,. $\left|B_{i}\right|$ is small
example:

$\longleftarrow 3$ nodes each deg $n-3$
$\longleftarrow n-3$ nodes each dey 3

$$
\begin{aligned}
& a<i \text { st. }(1+\beta)^{i-1} \leq 3 \leq(1+\beta)^{i} \\
& b \in i \text { st. }(1+\beta)^{i-1} \leq n-3 \leq(1+\beta)^{i} \\
& \forall C \neq a, b \quad\left|B_{c}\right|=0 \\
& \left.\begin{array}{l}
\left|B_{a}\right|=n-3 \\
\left|B_{b}\right|=3
\end{array}\right\} \begin{array}{c}
\text { both contribute } \\
(n-3) \cdot 3 \text { ed }
\end{array} \\
& \left|B_{b}\right|=3 \quad(n-3) \cdot 3 \text { edges }
\end{aligned}
$$

but these are not likely to be sampled

Still, maybe good enough for 2 -approximation?

Next idea:
Use "O" for small buckets

Old algorithm:

- Take sample S
- $S_{i} \leftarrow S \wedge B_{i}$
estimate $\left|B_{i}\right|$.

$$
\rho_{i} \leftarrow \frac{\left|s_{i}\right|}{\left|s^{\prime}\right|}
$$

- Output $\sum_{i} p_{i}(1+\beta)^{i-1}$

New algorithm:

- Take sample S (ho wbig?)
- $S_{i} \in S \cap B_{i}$
- estimate $\left|B_{i}\right|$:
for all i
if $\left|s_{j}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|s|}{c \cdot t}$
use $p_{i} \leftarrow \frac{\left|s_{i}\right|}{|s|}$
else $p_{i} \leftarrow 0$ "small"
- Output $\sum_{i} p_{i}(1+\beta)^{i-1}$
why $\sqrt{\frac{\varepsilon}{n}} \cdot \frac{|s|}{c \cdot t}$?
let $|s|=\theta\left(\sqrt{n}\right.$ polylogn \cdot poly $\left.\frac{1}{\varepsilon}\right)$
then $\left|\delta_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \frac{|\delta|}{c^{*} t} \Rightarrow\left|\delta_{N}\right| \geq \Omega\left(\right.$ polylogn \times poly $\left.\frac{1}{\varepsilon}\right)$

$$
\underset{\substack{\text { Union bind } \\ \Rightarrow}}{\Rightarrow} \forall i \quad\left(1-\gamma \left\lvert\, \frac{\left|B_{i}\right|}{n} \leq p_{i} \leq(1+\gamma) \frac{\left|B_{i}\right|}{n}\right.\right.
$$

Chernoff

$$
\text { for } \quad \gamma \sim \theta(\varepsilon)
$$

Why these settings of S ? (ignore dependence on ε for now)

* each bucket that hus at least $\approx \frac{1}{\sqrt{n}}$ fraction of nodes should have enough samples to be able to estimate the fraction.
* why $\approx \frac{1}{\sqrt{n}}$?
- we will want to argue that 'Small' buckets represent a very small fraction of the edges so it is ok to zero them out
- remember the clique lower bound example? if we set the "small" threshold to biggerthan $\frac{1}{\sqrt{n}}$ we might miss lots of edges (e.g. a clique on \sqrt{n} nodes will have $\theta(n)$ edges + shouldint be missed, but represents only $\frac{\sqrt{n}}{n}=\frac{1}{\sqrt{n}}$ fraction of nodes)
- why is $\frac{1}{\sqrt{n}}$ small enough?

See later!

* What is "enough" samples for each bucket?
- we will need to argue that we are getting good estimates Chernoff $\begin{gathered}\text { bound }\end{gathered}$ of $\frac{\left|B_{i}\right|}{n}$ for $\frac{\text { each }}{\uparrow_{\text {union bound }} \text { big bucket }}$ over logn buckets
so need prob of having bad estimate " δ " set to $\ll \frac{1}{\log n}$ per bucket
Chernoff will also depend on accuracy parameter $\beta=\frac{\varepsilon}{c}$

So if we set $S \approx \sqrt{n}$ poly $\left(\frac{1}{\varepsilon}\right)$ poly $(\log n)$
we should be more than ok

Analysis:

1) Output not too large:
idealistic
case \quad Suppose $\forall i \quad p_{i}=\frac{\left|B_{i}\right|}{n}$,
then $\begin{aligned} \sum_{i} p_{i}(1+\beta)^{i-1} & =\sum_{i} \frac{\left|B_{i}\right|}{n} \underbrace{(1+\beta)^{i-1}} \\ & \leq \bar{d} \quad \begin{array}{l}\text { deg of } \\ \text { nodes in } B_{i}\end{array}\end{aligned}$
realistic suppose $\forall i \quad p_{i} \leq \frac{\left|B_{i}\right|}{n}(1+\gamma) \quad$ e.g, when
case
i is big

$$
\Rightarrow \sum_{i} p_{i}(1+\beta)^{i-1} \leq d(1+\gamma)
$$

2) Can output be too small?

$$
\text { if } \left.\begin{array}{rl}
\forall i \quad p_{i}=\frac{\left|B_{i}\right|}{n} \text { then } \sum_{i} p_{i}(1+\beta)^{i-1} & =\sum_{i} \frac{\left|B_{i}\right|}{n}(1+\beta)^{i-1} \\
& \quad \text { multyplyby } \rightarrow \\
& (1+\beta)(1-\beta)<1
\end{array} \quad(1-\beta) \sum_{i} \frac{\left|B_{i}\right|}{n}(1+\beta)^{i}\right)
$$

by sampling, for big i, $p_{i} \geq \frac{\left|B_{i}\right|}{n}(1-\gamma)$ for small ?????

How much undercounting?
divide edges into 3 types

note: small-small can be a big problem big-small inly undercounted by a factor of 2

Example:
biabbing

5 nodes are dey 4 bucket C small

are dey bucket b small 3 nodes

Total degree: $5 \cdot(n-8)+(n-8) \cdot 3+4 \cdot 5=8(n-8)+20$
ave degree ≈ 8
algorithm will likely output ≈ 5

Example:

Samples:

most nodes here
why $p_{a} \in 1$

New algorithm:

- The sample S (how big??)
- $S_{i} \in S \cap B_{i}$
- estimate $\left|B_{i}\right|$:
for all i

$$
\begin{aligned}
& \text { if }\left|s_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \cdot \frac{|s|}{c \cdot t} \\
& \text { use } \rho_{i} \in \frac{\left|s_{i}\right|}{|s|}
\end{aligned}
$$

else $p_{i} \in 0$

- Output $\sum_{i} p_{i}(1+\beta)^{k-1}$
$\underbrace{}_{\text {bucket } c}$
bracket b
bucket C
few, if any, in these buckets
\Rightarrow who $b+c$ are small so likely that $p_{b}=p_{c}=0$
output ≈ 1.5

Good news:
Small buckets cant have many nodes
\Rightarrow bound on total $\#$ small-small edges
if $\left|B_{i}\right|>\frac{2 \sqrt{\varepsilon n}}{c t}$ then expected size of S_{i}

$$
\begin{aligned}
\text { is } & \geq|s| \cdot \frac{\left|B_{i}\right|}{n} \\
& \left.\geq|s| \cdot 2 \sqrt{\frac{\varepsilon}{n}} \cdot \frac{1}{c t} \quad\right\}_{\substack{\text { twice } \\
\text { threshold } \\
\text { for } \\
\text { "big" }}}^{\text {ti }}
\end{aligned}
$$

so likely algorithm will decide that i "big"

Assume for all i" small" that $\left|B_{i}\right| \leq \frac{2 \sqrt{\varepsilon n}}{c t}$
then total \# small-small edges

$$
\leq(\underbrace{\frac{2 \sqrt{\varepsilon n}}{c t}}_{\substack{\# \text { nodes } \\ \text { per small } \\ \text { bucket }}} \cdot \underbrace{\text { buckets }}<)^{2}=O\left(\frac{\varepsilon n}{c^{2}}\right)=O(\varepsilon n)
$$

if ignore small-smull edges,
they affect approx of \bar{d}
by $\leq \frac{\varepsilon n}{n}=\varepsilon \quad$ additive factor $\left\{\begin{array}{l}\text { assume } \\ d \geq 1\end{array}\right.$
$\leq(1+\varepsilon) \quad$ multiplicative factor

First Claim:

Improving further:
need to improve on "big-small" edos
Can we estimate fraction of them * correct for them?
e.g. by sampling random edges?

New queries:
random neighbor query (v) :
given v, return random $n b r$ of v implementation:

1. degree query to v
2. pick random $i \in[1 . . \operatorname{deg}(v)]$
3. neighbor query (v, i)
pick (almost) random edge in (big) bucket i: pick random edge by sampling nodes until one falls in bucket i return random nor query from that node

Estimate fraction big-small in $B_{i}($ big $)$:
repeat $O(1 / 8)$ times
pick random node $u \in B_{i}$
$e \leftarrow$ random nor of u
set a_{j} to be $\begin{cases}l & \text { if } e \text { "big-sman" } \\ 0 & 0 . \omega_{1}\end{cases}$
(e is "big-big")
Output $\alpha_{i}=$ average a_{j}

Analysis:
easy case: all nodes in B_{i} have same degree

$$
\begin{aligned}
& T_{i} \leftarrow \# \text { bly-small edges in } B_{i} \\
& \operatorname{Pr}\left[\text { "big-small edge e in } B_{1} \text { chosen }\right]=\frac{1}{\left|B_{i}\right|} \cdot \frac{1}{d} \\
& \begin{array}{l}
(u, v) \\
\text { only one of } u, v \text { bit }
\end{array} \\
& \text { wog assume } u \text { big } \\
& \underbrace{\text { is }}_{\text {prob u }} \underbrace{p_{\text {prob }}}_{(u, v)} \\
& \text { chosen output } \\
& \text { a chosen } \\
& \text { so } \operatorname{Pr}\left[a_{j}=1\right]=E\left[a_{j}\right]=\frac{T_{i}}{d \cdot\left|B_{j}\right|}
\end{aligned}
$$

general case! all nodes in B_{i} have degrees within $(1+\beta)$ factor of each other

$$
\begin{aligned}
& \frac{1}{\left|B_{i}\right|(1+\beta)^{i}} \leq P_{r}\left[{ }^{11} b i g-s m a \| l \text { edge } e \text { in } B_{i} \text { chosen }\right] \leq \frac{1}{\left|B_{i}\right|(1+\beta)^{i-1}} \\
& \frac{T_{i}}{\left|B_{i}\right|(1+\beta)^{i}} \leq \underbrace{E\left[a_{j}\right]}_{\text {estimate to }} \leq \frac{T_{i}}{\left|B_{i}\right|(1+\beta)^{i-1}}\rangle \Longrightarrow \\
& 1+\varepsilon \text {-multi factor } \\
& \text { to get } \\
& (1+\varepsilon)(1+\beta) \text { estimate } \\
& \text { of } \frac{T_{i}}{n} \text { via } \alpha_{i} p_{i} \underbrace{(1+\beta)^{i-1}}_{\text {undercount }} \\
& E\left[a_{j}\right]\left|B_{i}\right|(1+\beta)^{i-1} \\
& \leq T_{i} \\
& \leq E\left[a_{j}\right] \mid \beta_{i}(1+\beta)^{i} \\
& \text { of } \# \\
& \text { edges in } B \text { i }
\end{aligned}
$$

Example:
biabbing

5 nodes are dey 4 bucket C small

small-small
ave dey $n-5$ bucket b small 3 nodes

Total degree: $5 \cdot(n-8)+(n-8) \cdot 3+4 \cdot 5=8(n-8)+20$
ave degree ≈ 8
algorithm will likely output ≈ 5
\#big-small edges slots: $3 \cdot(n-8)$
Fraction of

Final Algorithm:

- sample $\theta\left(\frac{\sqrt{n}}{\varepsilon} t\right)$ nodes + place in S
$-S_{j} \leftarrow S A B_{i}$
- For all i

$$
\text { if }\left|S_{i}\right| \geq \sqrt{\frac{\varepsilon}{n}} \frac{|s|}{c t}
$$

use $\rho_{i} \leftarrow \frac{\left|s_{j}\right|}{|s|}$
for all $v \in S_{\text {; }}$

- Pick random nor u of v

$$
\begin{aligned}
& \cdot X(v) \leftarrow\left\{\begin{array}{cc}
1 & \text { if } u \text { is small } \\
0 & 0 . \omega .
\end{array}\right. \\
& \alpha_{i} \leftarrow \frac{\left|\left\{v \in S_{i} \mid X(v)=1\right\}\right|}{\left|s_{i}\right|}
\end{aligned}
$$

else use $p_{i} \leftarrow 0$

- Output $\sum_{\substack{\text { large } \\ i}} \rho_{i}\left(1+\alpha_{i}\right)(1+\beta)^{i-1}$ correction to get other side of brg-big α one side of big-small big-small

Where do errors come from?
 small-small edges $\}$ additive En error

