
Lecture 4 :

Distributed Algorithms
vs .

Sub linear time Algorithms :

the case of vertex cover

Given : "

sparse
"

graph max degree o
adjacency list representation

Vertex Cover
-

Tf
'

EF is a

"

vertex cover
"

(Vc)

if tf Cup) EE

either u e
-

V
'
or vet

'

What is min size of VC ?

÷¥o÷. o* on,
E , k£0

star K- clique n - cycle
KH Wd -- K - I wiyfnmeven)

Degree ID graphs : can we get a better bound?

I Vcl z Mf
since each node can cover

E o edges

Complexity of V. C
.

'

.

" NP-complete to solve exactly
• poly time to get 2- approx
• sub linear time multiplicative approx ?

graph with no edges : lvcko molt approx must
return 0

graph with ledge : HH muttrappur:ymyos§
distinguishing
requiresLlnl queries

• sub linear time additive approx ?
hard I

computationally hard to estimate to better

than 1.36 (maybe even 2)
⇒ additive even harder

additive ⇒ super good mutt approx
• Combination ?

approx

Additive - Multiplicative approx error :

ded yd is Ige) - approximation of sdn

value y for a minimization

problem if ye y
'

Edyta
MA tadditwe

mentor error

(analogous defn for maximization problems)

Some background on distributed algorithms :
local

(LOCAL model)
• Network

• to- processes Iraq
,

}⑧- links 00 Id #
* Communication rounds:

- nodes perform computation. on
input buts
random coins

node ID

history of received messages
- nodes send msgs to neighbors
- nodes receive msgs from neighbors

• def Vertex Cover for distributed network :

• network graph input graph
• goat : at end , each node knows if it is

in or out of VC

(don't need to know about other nodes)

Main insight on why fast distributed algorithms
µ

sub linear time

• In K - round distributed algorithm ,

output of node v only depends
on nodes at distance K from?

only Dk nodes in ball of radius k

from V

• can sequentially simulate v's view

of distributed computation withed
"

queries
to input , t figure out if r is

in or out of V. C
.

Simulating V's view of K- round distributed computation :

round 1 :

¥0
- each node sends msg

based on inputs random bits

* Eso
- each node gets msg from each nbr which is

0 based on nbr 's input , random bitt

round 2 :

- each node sends msg
based on input - random bits

tmsgs from o nbrs in rnd1

go
- each node gets msg from each nbr which is

① based on nbr 's input , random bitt t
their

④ FO raid. msgs from rounds

rot % :
•

I . fast distributed algorithm , we aan
simulate

t get oracle which tells us

if V is in Vue
.

How do you use thus to approx V. C
,

in sub linear time?

Parras - Ron framework :

sample nodes ti -Fr

for each Vi ,

simulate distributed algorithm to see if Vick .

Output # ri 's ink
-p

or N

①very Complexity : ke # rounds of

0(r.dktyzfffs.dk
"

) distal form,

D= Max degree
of network

Approximation guarantee ?
(input graph)

same approx error of distributed aly
*

Chernoff Hoeffding bounds ⇒ En additive error

BIT ; Are there fast distributed algorithms for V.C
.
?

YES ! !
[parnas - Ron]Here is one (not the best but simple)

incl (i. round libration ¥)

while edges remain :

• remove nodes of deg Z Eg. t adjacent edges
-

putfhesein already
V. C . covered

• update degrees of remaining nodes

• increment i

Output all removed nodes as V. C
,

rounds : logo

incl

while edges remain :

• remove nodes of deg Z Eg. t adjacent edges
-

putfhesein already
V. c . covered

• update degrees of remaining nodes

• increment i

Output all removed nodes as V. C
.

-
remove in

0=16 round't O

example :

x

o
°

•
X •p ¥0
I

0×-0. 7¥¥÷•¥•*:÷:
remove in round 2

Nothing removed in round 3

(blue
,pink,green) Removed nodes placed in V. C

.

(clear) other nodes are not in output V. C.

incl

while edges remain :

• remove nodes of deg Z Eg. t adjacent edges
-

putfhesein already
V. c . covered

• update degrees of remaining nodes

• increment i

Output all removed nodes as V. C
,

-

Is it a V. c .
?

no edges remain at end

adll edges were removed when adjacent
node was put into V. C

.

Is it a good approximation ?

Let optimal 0 be any min V. c. of G

Thin lol E output E (2 logo ti) . lol

p t to prove
because

Q is min
taller

incl

Pf while edges remain :

- '

• remove nodes of deg Z Eg. t adjacent edges
-

putfhesein already
V. C . covered

• update degrees of remaining nodesie
.

Claim each roundtitration adds I 210=1 new nodes

to output V. C . that are not in 0
I

WI? observation : at ith round others -

wereremoved
(1) all nodes remaining in graph have degree EFFearlier
(2) all removed nodes have degree Z F } algorithm

design
removed nodes at round j for removed nodes :

-if Fitz degree > Oz.
- Let X = removednodes at iteration i

but not in A¥11) claim all edges touching X
must touch 0 at other endnotion why} because Q is V' C

'

not removed yet

edges touching X :

Z Iya. . 1×1 since deg of any
node in X
Z E
zi

±
i. Ifl since each edge has other endpt

in Q t all nodes have

degree Edgin
⇒ ¥.tt?EfxM1xlE2il0t

Dq

deg X f dey
•- o c D> Ii

;;
-

Ji - i

g
d

y
°

0

idea

lots of nodes in X ⇒ lots of edges in X⇒ (since each

node in A can't handle too
many edges)lots of nodes in f

.

but 0 isn't that big , so X can't be too big
either

.

Roundy
incl

while edges remain :

• remove nodes of deg Z Eg. t adjacent edges
-

putfhesein already
V. c . covered

• update degrees of remaining nodes

• increment i

Output all removed nodes as V. C
.

Claim each round adds I 210-1 new nodes (noting)
to output V. C .

since E logo rounds

output E lol t 2101 - logo
= (Its logo) alot

size of V.C. that is output

Ollogo)Gives (Ollogolid - approx in D queries
no dependence on h

Can do better
. . . just ooo, e

