Lecture 4:

Distributed Algorithms

V5.

Sublinear time Algorithms:

the case of vertex cover

Given: "Sparse" graph max degree \triangle adjacency list representation Vertex Cover $\nabla' \leq \nabla$ is a "vertex cover" (VC) if V (u,v) EE either UEV' or VEV' What is min size of VC? star k-clique n-cycle Nc|=1 Nc|=K-1 |VC|=n/2Degree = A graphs: Can we get a better bound? since each node can cover $S \triangle$ edges $|Vc| \ge \frac{m}{\Delta}$

Complexity of V.C. ; · NP-complete to solve exactly poly time to get 2-approx · sublinear time multiplicative approx? graph with no edges: lvcl=0 mult approx must return 0 > Ledge: [VC] = 1 mult approx must return >0 distinguishing requires (L(n) queries graph with • sublinear time additive approx? hard! Computationally hard to estimate to better thum 1.36 (maybe even 2) additive even harder additive => supergood mult approx bination? · Combination?

Additive + Multiplicative approx error:

def y is (x, ε) - approximation of solution value y for a minimization problem if $y \leq y' \leq dy + \varepsilon$ mult error(analogous defn for maximization problems)

In k-round distributed algorithm,

6

Can sequentrally simulate v's view
 of distributed computation with ≤ d^K queries
 to input, t figure out if v is
 in or out of V.C.

Simulating v's view of K-round distributed computation:

round 1 :

5 - each node sends msg based on input & random bits 5 - each node gets msg from each nbr which is based on nbr's input, random bit

round 2:

- Each node sends msg based on input & random bits + msgs from & nbrs in rnd 1

- each node gets msg from each nbr which is based on nbr's input, random bit t their nbeso roud. msgs from round 1.

• fast distributed algorithm, we dan simulate • J get oracle which tells us if V is in V.C.

How do you use this to approx V.C. in sublinear time?

Parnas-Ron Framework:

Sample nodes V. Vr

for each Vi, simulate distributed algorithm to see if VieV.C.

Output # vis in VC . n

Query Complexity: K=# rounds of olist aly for V.C, $O(\Gamma \cdot \Delta^{k_{+}}) \approx O(\frac{1}{\xi^2} \Delta^{k_{+}})$ D= max degree of network (input grouph)

Approximation guarantee?

same approx error of distributed alg

additive error Chernoff/ Hoeffding bounds => En

But: Are there fast distributed algorithms for V.C.?
YESII
Here is one (not the best but simple) [Parms + Ron]

$$i \in I$$
 ($i = round$ [iteration #)
While edges remain:
· remove nodes of deg $\geq \Delta_i$ + adjucent edges
· remove nodes of deg $\geq \Delta_i$ + adjucent edges
put these in V.C.
· update degrees of vemaining nodes
· increment i
Output all removed nodes as V.C.

rounds: log ∆

While edges remain;
remove nodes of deg
$$\geq \frac{\Delta}{2}$$
 + adjucent edges
put these in already
V.c. covered
• update degrees of vemaining nodes
• increment i
Dutput all removed nodes as V.C.

ls it a V.C.?

ls it a good approximation? Let optimal O be any min V.C. of G

The
$$|\theta| \leq output \leq (2 \log \Delta + 1) \cdot |\theta|$$

The forprove
be cause
 θ is min
 $\forall a V.c_{1}$

P.

$$I = 1$$

 V_{i} while edges remain;
 $remove nodes of deg $\geq \Delta_{2}$ + adjuent edges
 $por these in a ready
 $por these in a ready$$

edges touching X: $\geq \Delta_{i} |\chi|$ since deg of any node in χ $2^{i} > \Delta$ $\geq \Delta$ $=) \qquad \underbrace{A}_{2^{*}} |\Theta| \geq \underbrace{A}_{2^{*}} |X|$ |x| ≤ 2. [0] deg X ZA Zⁱ of Ð dez <u>4</u> 2^{*i*-1} iken lots of nodes in $X \Rightarrow$ lots of edges in $X \Rightarrow$ (since each node in & can't handle too many edues) lits of nodes in O. but I isn't that big, so X curl be too big either.

i=| While edges remain: · remove nodes of deg $\geq \frac{\Delta}{2^{i}} + adjacent edges$ put these in already V.C. Covered V.C. Covered • increment i Output all removed nodes as V.C. Claim each round adds 52101 new nodes (noting) to output V.C. since s log & rounds Output ∈ 101 + 2101 · log > = (1+2log D).[0] Size of V.C. that is output Gives $(O(by \Delta), \varepsilon) - \alpha pprox$ in Δ gueries Can do better ... no dependence on h just \$\$, E