Lecture 4:

Distributed Algorithms

VS.
Sublinear time Algorithms:
the case of vertex cover

Given: "Sparse" graph max degree Δ adjacency list represesatution

Vertex Cover
$V^{\prime} \leq V$ is a "vertex cover" (VC)
if $\quad \forall(u, v) \in E$
either $u \in V^{\prime}$ or $v \in V^{\prime}$
What is min size of VC?

star
Nc|=1

k-clique
$\mid \mathrm{cc}=\mathrm{k}=1$

n - cycle
(n even)
$|v|=n / 2$

Degree $\leq \triangle$ graphs: can we get a better bound?
$|V C| \geq \frac{m}{\Delta} \quad$ since each node can cover

Complexity of $V_{1} C_{1}$:

- Np-complete to solve exactly
- poly time to get 2-approx
- sublinear time multiplicative approx?
graph with no edges: $|v c|=0$ molt approx must return $0<$ graph with \mid edge: $\left.|V C|=1 \begin{array}{c}\text { mut apprix must } \\ \text { return }>0\end{array}\right\}$ requires $\Omega(n)$ queries
- sublinear time additive approx?
hard!
computationally hard to estimate to better than 1.36 (maybe even 2)
\Rightarrow additive even harder additive \Rightarrow superyood molt approx
approx
- Combination?

Additive + Multiplicative approx error:
def \hat{y} is (α, ε)-approximation of soln
value y for a minimization problem if $\quad y \leq \hat{y} \leq 2 y+\varepsilon$ $\prod_{\substack{\text { multi } \\ \text { error }}}^{\substack{\text { additive } \\ \text { error }}}$
(analogous def for maximization problems)

Some background on distributed a alGorithms:

- Network local
(LOCAL model)
- processes
- links

- Communication round:
- nodes perform computation on input bits random coins
node IO
history of received messages
-nodes send mags to neighbors
- nodes receive mags from neighbors
- def Vertex Cover for distributed network:
- network graph input graph
- goal: at end, each node Knows if it is in or out of VC
(don't need to know about other nodes)

Main insight on why fast distributed algorithms \Downarrow
sublinear time

- In k-round distributed algorithm, output of node v only depends on nodes at distance K from v.

- Can sequentially simulate v's view of distributed computation with $\leq d^{k}$ queries to input, a figure out if v is in or out of V,C.

Simulating v's view of k-round distributed computation:
round 1:

- each node sends msg based on input drandom bits
-each node gets msg from each nor which is based on nebr's input, randombit
round 2:
- each node sends msg based on input trandom bits \& mags from Δ nbrs in rad 1

- fast distributed alyonthm, we can simulate α get oracle which tells us if v is in V.e.

How do you use this to approx V.C. in sublinear time?
Parnas-Ron framework:
Sample nodes $v_{i}^{\cdots} v_{r}$
for each v_{i},
simulate distributed algorithm to see if $v_{i} \in V . C$.

$$
\text { Output } \frac{\# v_{i}^{\prime} ' s ~ i n V C}{r} \cdot n
$$

Query Complexity:

$$
O\left(r \cdot \Delta^{k+1}\right) \approx O\left(\frac{1}{\varepsilon^{2}} \Delta^{k+1}\right)
$$

$k=\#$ rounds of dist all for V, c,
$\Delta=\max$ degree of network
Approximation guarantee? (input graph)
same approx error of distributed all

$$
f
$$

Chernoff/Hoeffding bounds \Rightarrow in additive error

BUT: Are there fast distributed algorithms for V.C?
YESII
Here is one (not the best but simple) [Pachas tRon]

$$
i \leqslant 1
$$

$$
(i \equiv \text { round liberation \#) }
$$

While edges remain:

- remove nodes of $\underbrace{}_{\begin{array}{c}\text { put these in } \\ \text { V.c. }\end{array}}+\underbrace{\text { adjacent edges }}_{\begin{array}{c}\text { already } \\ \text { covered }\end{array}}$
- update degrees of remaining nodes
- increment i

Output all removed nodes as V.C.
\#rounds: $\log \Delta$
$i \in 1$
While edges remain:

- remove nodes of $\underbrace{}_{\begin{array}{c}\text { put these in } \\ \text { Vic. }\end{array}} \geq \frac{\Delta}{2^{i}}+\underbrace{\text { adjacent edges }}_{\begin{array}{c}\text { already } \\ \text { covered }\end{array}}$
- update degrees of remaining nodes
- increment i

Output all removed nodes as V.C.

nothing removed in round 3
(blueppiikggreen) Removed nodes placed in V.C.
(clear) other nodes are not in out put V.C.

$$
i \leqslant 1
$$

While edges remain:

- remove nodes of $\underbrace{\text { dey }}_{\begin{array}{c}\text { put these in } \\ \text { V.C. }\end{array}} \geq \frac{\Delta}{2^{i}} \quad+\underbrace{\text { adjacent edges }}_{\begin{array}{c}\text { already } \\ \text { covered }\end{array}}$
- update degrees of remaining nodes
- increment i

Output all removed nodes as V.C.

Is it a V.C.?
no edges remain at end all edges were removed when adjacent node was put into V.C.

Is it a good approximation?
Let optimal θ be any min V.C. of G
The $|\theta| \leq$ output $\leq(2 \log \Delta+1) \cdot|\theta|$
because θ is min

$$
\text { ta V.C. } c_{2}
$$

$i \in 1$
PI
While edges remain:

- remove nodes of $\underbrace{\operatorname{din}}_{\begin{array}{c}\text { put these in } \\ \text { V.c. }\end{array}} \geq \frac{\Delta}{2^{i}}+\underbrace{\text { adjacent edges }}_{\begin{array}{c}\text { al ready } \\ \text { covered }\end{array}}$
- update degrees of remaining nodes
- increment i

Output all removed nodes as V.C.

Claim each round/iteration adds $\leq 2|\theta|$ new nodes to output V.C. that are not in θ

Why? observation: at $i^{\text {th }}$ round others
(1) all nodes remaining in graph have degree $\leq \frac{\Delta}{2^{i-1}}$ 隻arlier
(2) all removed nodes have degree $\left.\geq \frac{\Delta}{2^{i}}\right\} \begin{aligned} & \text { algorithm } \\ & \text { design }\end{aligned}$

for removednodes:

$$
\frac{\Delta}{\alpha^{i-1}} \geq \text { degree } \geq \frac{\Delta}{2^{i}}
$$

Let $X=$ remorednabes at iteration 1 but not in θ
Claim all edges touching X must touch θ at other end Why? because θ is V.C.
\# edges touching X :
$\frac{\Delta}{2^{i}} \cdot|X| \quad$ since deg of any node in X
$\geq \frac{\Delta}{2^{i}}$
$\leq \frac{\Delta}{2^{i-1}} \cdot|\theta| \quad$ since each edge has other endpt $\operatorname{in} \theta \propto$ all nodes have degree $\leq \frac{\Delta}{2^{i-1}}$

$$
\Rightarrow \begin{array}{r}
\sum_{2^{i x}}^{\Delta}|\theta| \geq \frac{\Delta}{2^{\prime \prime}}|x| \\
|x| \leq 2 \cdot|\theta|
\end{array}
$$

ikea
lots of notes in $X \Rightarrow$ lots of elges in $X \Rightarrow$ (since each node in θ cant handle too many edges) lots of nodes in θ.
but θ is nt that bin, $80 X$ cunt be too big either.

Round

$$
i \leqslant 1
$$

While edges remain:

- remove nodes of $\underbrace{\operatorname{dey} \geq \frac{\Delta}{2^{i}}}_{\begin{array}{c}\text { put these in } \\ \text { V.C. }\end{array}}+\underbrace{\text { adjacent edges }}_{\begin{array}{c}\text { al ready } \\ \text { covered }\end{array}}$
- update degrees of remaining nodes
- increment i

Output all removed nodes as V.C.

Claim each round adds $\leq 2|\theta|$ new nodes (noting θ) to output V.C.
since $\leq \log \varnothing$ rounds

$$
\begin{aligned}
\text { output } & \leq|\theta|+2|\theta| \cdot \log \Delta \\
& =(1+2 \log \Delta) \cdot|\theta|
\end{aligned}
$$

size of V.C. that is output

Can do better...
no dependence on n just \&

