Lecture 4:

Distributed Algorithms

V5.

Sublinear time Algorithms:

the case of vertex cover

Given: "sparse" graph max degree \triangle adjacency list representation Vertex Cover $\nabla' \leq \nabla$ is a "vertex cover" (VC) if V (u,v) EE either NEV' or VEV' What is min size of VC? star k-clique n-cycle K-clique n-cycle (n even) Degree $\leq \Delta$ graphs: $|VC| \geq \frac{m}{\Delta}$ Since each node can $Cover \leq \Delta$ edges

Complexity of V.C. :

- · NP-complete to solve exactly
- · poly time to get 2-approx
 - · sublinear time multiplicative approx?
 - gruph with no edges [VC|=0 mult approx must return 0 reed evil
 gruph with 1 edge IVC|=1 mult approx must return = 0 distinguish
 - · sublinear time additive approx?

hard need mult error computationally hard to est to better than [,36 mult (maybe even 2)

· Combination?

Additive + Multiplicative approx error:

def y is (x, ε) - approximation of solution value y for a minimization problem if $y \leq y' \leq dy + \varepsilon$ mult error(analogous defn for maximization problems)

In k-round distributed algorithm,

Can sequentially simulate v's view
 of distributed computation with ≤ d^K queries
 to input, + Frgure out if v is
 in or out of V.C.

Simulating v's view of K-round distributed computation:

round 1: - Each node sends msg based on input & random bits -each node gets msg from each nbr which is based on nbr's input, random bit (\mathbf{v}) round 2: - each node sends msg based on input, random bits, t msgs from SA nors -each node gets msg from each nbr based on their info from round 1 er open round 3: er open round 3: Porto open cach node sends msg based on input, random bits, Porto of the msgs from ≤∆ nbrs in forst 2 rounds The open cach node gets msg from each nbr based on their info from rounds: 1+2

• fast distributed alg => oracle which tells you if v is in VC How do you use this to approx V.C. in sublinear time? Parnas-Ron Framework: Sample nodes Vi. Vr for each Vi, simulate distributed algorithm to see if Vi EV.C. Sives E.n additive
approx of V.C.
Scholtiplicative
approx of V.C. Output # vis in VC . n Query Complexity: k = # rounds of dost alg D = max degree of distributed network $O(r \cdot \Delta^{krt}) \approx O(\frac{1}{\epsilon^2} \cdot \Delta^{krt})$ Approximation guarantee?

Chernoff / Hoeffding bnds

While edges remain:
remove nodes of deg
$$\geq \frac{\Delta}{2}$$
 + adjacent edges
put these in al ready
V.c. covered
• update degrees of vemaining nodes
• increment i
Dutput all removed nodes as V.C.

ls it a V.C.?

ls it a good approximation? Let optimal O be any min V.C. of G

Thm.
$$|\theta| \leq \text{output} \leq (2 \log \Delta + 1) |\theta|$$

f
since output to provel.
is V.C. +
() is min

Not removed yet

must truch & at other end why? since & is V.C.

edges touching X : $\geq \Delta_{2^{i}} \cdot |\mathbf{x}|$ $\leq \Delta_{2^{i-1}} |\theta|$ $\left(since deg z \Delta \right)$ $(since each edge has other endpt in <math>\Theta$, # all nodes have $deg \leq \frac{\Delta}{2^{n-1}}$) $=) \qquad \underbrace{A}_{x_1} |x| \leq \underbrace{A}_{x_1} \cdot |\Theta|$ 1x| ≤ 2·(0)

i=| while edges remain: · remove nodes of deg $\geq \frac{\Delta}{2^{i}} + adjucent edges$ put these in already V.C. Covered Update degrees of remaining nodes • increment i Output all removed nodes as V.C. Claim each round adds ≤ 2101 new nodes (noting) to output V.C. Since $\leq \log \Delta$ rounds, outpt = 101 + 2101.log ∆ $= (1 + 2 \log \Delta) \cdot 101$ $O(\log \Delta)$ Gives $O(\log \Delta), \varepsilon$ approx in Δ gueries Can do better...