Lecture 4:

Distributed Algorithms

VS.
Sublinear time Algorithms:
the case of vertex cover

Given: "Sparse" graph max degree Δ adjacency list represesatution

Vertex Cover
$V^{\prime} \leq V$ is a "vertex cover" (VC)
if $\quad \forall(u, v) \in E$
either $u \in V^{\prime}$ or $v \in V^{\prime}$
What is min size of VC?

star

k-clique

n - cycle (n even)

Degree $\leq \triangle$ graphs:
$|V C| \geq \frac{m}{\Delta} \quad \begin{aligned} & \text { since each node can } \\ & \text { Cover } \leq \Delta \text { edges }\end{aligned}$

Complexity of $V_{1} C_{1}$:

- Np-complete to solve exactly
- poly time to get 2-approx
- sublinear time multiplicative approx?
- graph with no edges $|V C|=0$
molt approx must return $0\left\{\begin{array}{l}\text { need } \\ 0(n)\end{array}\right.$
- graph with l edge $|V C|=1$ molt approx must return >0 to $\begin{aligned} & \text { distinguish }\end{aligned}$
- sublinear time additive approx?
hard! need molt error
computationally hard to est to better than 1.36 mult (maybe even 2)
- Combination?

Additive + Multiplicative approx error:
def \hat{y} is (α, ε)-approximation of soln
value y for a minimization problem if $\quad y \leq \hat{y} \leq 2 y+\varepsilon$ $\prod_{\substack{\text { multi } \\ \text { error }}}^{\substack{\text { additive } \\ \text { error }}}$
(analogous def for maximization problems)

Some background on distributed algorithms:

- Network
-processes \Leftarrow max $\operatorname{deg} \Delta$
- links
- Communication round:
- nodes perform computation on
input bits
random coins
node IO
history of received messages
-nodes send mags to neighbors
- nodes receive mags from neighbors
- def Vertex Cover for distributed network:
- network graph input graph (network computes on ITSELF)
- goal: at end, each node Knows if it is in or out of VC (doesnt necessarily know anything else)

Main insight on why fast distributed algorithms \Downarrow
sublinear time

- In k-round distributed algorithm, output of node v only depends on nodes at distance K from. At most d^{k} of these!

- Can sequentially simulate v's view of distributed computation with $\leq d^{k}$ queries to input, + figure out if v is in or out of V.C.

Simulating v's view of k-round distributed computation:
round 1:

- each node sends msg based on input a random bits
(v) -each node gets msg from each nor which is based on nbr's input, randombit
round 2:
- each node sends msg based on input, random bits, + mags from $\leq \triangle$ nbrs
-each node gets msg from each $n b r$ based on their info from round 1
round 3:
ginkgo -each node sends msg based on input, random bits, \& mags from $\leq \Delta$ noes in first 2 rounds -each node gets msg from each $n b r$ based on their info from rounds $1+2$
.. fast distributed alg \Rightarrow oracle which tells you if v is in VC

How do you use this to approx V.C. in sublinear time?
Parnas-Ron framework:
Sample nodes $V_{1} \cdots V_{r}$
for each v_{i},
simulate distributed algorithm to see if $v_{i} \in V . C_{\text {. }}$

$$
\begin{aligned}
\text { Output } \frac{\# v_{i}^{\prime} s \text { inVC}}{r} \cdot n & \left\{\begin{array}{l}
\text { gives } \varepsilon \cdot n \text { additive } \\
\text { approx of } V C . \\
\\
\\
\Rightarrow \text { C-moltiplicative } \\
\text { approx of } V C .
\end{array}\right.
\end{aligned}
$$

Query Complexity:

$$
O\left(r \cdot \Delta^{k+1}\right) \approx O\left(\frac{1}{\varepsilon^{2}} \cdot \Delta^{k+1}\right)
$$

$k= \pm$ rounds of dost alg
$\Delta=\max$ degree of distributed network
Approximation guarantee?
Chernoff / Hoeffding buds

BUT: Are there fast distributed algorithms for V.C?
YES

$$
i \in 1
$$

While edges remain:

- remove nodes of $\underbrace{}_{\begin{array}{c}\text { put these in } \\ \text { V.c. }\end{array}}+\underbrace{\text { adjacent edges }}_{\begin{array}{c}\text { already } \\ \text { covered }\end{array}}$
- update degrees of remaining nodes
- increment i

Output all removed nodes as V.C.
\#rounds: $\log \Delta$
example:

$$
\Delta=16
$$

remove in round 1

remove in round 2
remove nothing in round 3

$$
i \leqslant 1
$$

While edges remain:

- remove nodes of $\underbrace{\operatorname{d.c} \geq \frac{\Delta}{2^{i}}}_{\substack{\text { put these in } \\ \text { V.C. }}} \quad+\underbrace{\text { adjacent edges }}_{\begin{array}{c}\text { al ready } \\ \text { covered }\end{array}}$
- update degrees of remaining nodes
- increment i

Output all removed nodes as V.C.

Is it a V.C.?
no edges remain at end all removed along with adjacent node

Is if a good approximation?
Let optimal θ be any $\min V C$. of G

Thu. $\quad|\theta| \leq$ output $\leq(2 \log \Delta+1)|\theta|$
\uparrow
since output
is VC. α
to prove!. θ is min
$i \in 1$
Pf.
While edges remain:

- remove nodes of $\underbrace{}_{\begin{array}{c}\text { put these in } \\ \text { V.C. }\end{array}} \geq \frac{\Delta}{2^{i}}+\underbrace{\text { adjacent edges }}_{\begin{array}{c}\text { already } \\ \text { covered }\end{array}}$
- update degrees of remaining nodes
- increment i

Output all removed nodes as V.C.

Claim each roundliteration adds $\leq 2|\theta|$ new nodes to output V.C.

Why? Observation: at th round
(1) all nodes remaining in graph have degree $\leq \frac{\Delta}{2^{i-1}}$
(2) all removed nodes have degree $\left.\geq \frac{\Delta}{2^{i}}\right\} \begin{aligned} & \text { algorithm } \\ & \text { design }\end{aligned}$
removed nodes at round i

$$
\frac{\Delta}{2^{i-1}} \geq \operatorname{degret} \geq \frac{\Delta}{2 i}
$$

let $X=$ removed at iteration i but not in θ
Claim all edges touching X must touch θ at other end why? since θ is V.C.
\#edges touching x :

$$
\geq \frac{\Delta}{2^{i}} \cdot|x| \quad\left(\text { since } \operatorname{deg} \geq \frac{\Delta}{2^{i}}\right)
$$

$\leq \frac{\Delta}{2^{i^{-1}}}|\theta| \quad$ (since each edge has other endpt $\operatorname{in} \theta,+$ all nodes have $\left.\operatorname{deg} \leq \frac{\Delta}{2^{i-1}} \quad\right)$

$$
\begin{aligned}
\Rightarrow \quad \frac{\Delta x}{\alpha^{<-1}} \cdot|x| & \leq \frac{\Delta}{2 k^{1}} \cdot|\theta| \\
|x| & \leq 2 \cdot|\theta|
\end{aligned}
$$

Round

$$
i \leqslant 1
$$

while edges remain:

- remove nodes of $\underbrace{\operatorname{deg} \geq \frac{\Delta}{2^{i}}}_{\begin{array}{c}\text { put these in } \\ \text { V.C. }\end{array}}+\underbrace{\text { adjacent edges }}_{\begin{array}{c}\text { al ready } \\ \text { covered }\end{array}}$
- update degrees of remaining nodes
- increment i

Output all removed nodes as V.C.

Claim each round adds $\leq 2|\theta|$ new nodes (noting θ) to output V.C.

Since $\leq \log \Delta$ rounds,

$$
\begin{aligned}
\text { output } & \leq|\theta|+2|\theta| \cdot \log \Delta \\
& =(1+2 \log \Delta) \cdot|\theta|
\end{aligned}
$$

Gives $(O(\log \Delta), \varepsilon)$ approx in Δ queries
Can do better...

