Lecture 5:

- Greedy algorithms vs. Sublinear time:
the case of maximal matching
- Property Testing:
is the graph planar?

Sublinew time algorithms via greedy:

We focus on problem of
estimating size of maximal matching (MM) in degree bounded graph
why?

- step towards approx maximum matching problem
- relation to Vertex Cover (VC)
$|N C| \geq|M M| \leftarrow$ for each edge in matching true for $\quad u \vec{v} u$ or v has to true for any matching any mut + matching edges are node-disjinint
not maximal all nodes in MM into VC
$|V C| \leq 2 \cdot|M M| \leftarrow$ put all nodes in MM into $V C$ $\stackrel{\rightharpoonup}{u} v(u, v) \in M M$ put u, v into $V C$ why is this $V C^{2}$ if any edge
not covered by $V C$ we can add not covered by VC to $M M \rightarrow \subseteq$

Note (similar to VC)
if degree $\leq \Delta$, maximal matching $\geq \frac{m}{2 \Delta}$
why? run process
when place edge (u, v) in to MM
delete other edges of u or v $(\leq 2 \Delta)$ which can no longer be in matching all other edges are fair game

Greedy Sequential Matching Algorithm:

$$
\begin{aligned}
& \left.M \in 母 \quad \begin{array}{l}
\text { one by one } \\
\forall e=(u, v) \in E
\end{array} \quad \begin{array}{l}
\text { in some order) }
\end{array}\right)
\end{aligned}
$$

if neither u or v matched previously in this add e to M order

Output M

Observation:
M is maximal
why? if e \&M then either u or v already (u, v) matched

Oracle Reduction Framework: (Parnas - Ron)
Assume given deterministic "oracle" O(Ω) which tells you if $e \in M$ or not in one step

Algorithm to estimate $|M|$:

- $S \leftarrow$ set of $S=\frac{8}{\varepsilon^{2}}$ nodes chosen lid
- $\forall v \in S^{\prime}$
let $X_{v} \leftarrow \begin{cases}1 & \text { if any call to } \theta(v, w) \text { for } w \in N(v) \\ 0 & 0 . \omega \text {. } \quad \text { returns "yes" }\end{cases}$
- Output $\begin{array}{r}\frac{n}{2 S} \sum_{v \in S} X_{v}+\frac{\varepsilon}{2} \cdot n \\ \text { since } 2 \text { nodes average } 4\end{array}$

Since 2 nodes for nodes matched each edge in M in sample

- $S \leftarrow$ set of $S=\frac{8}{\varepsilon^{2}}$ nodes chosen vil

Behavior of output:
(why a good approximation?)

- $\forall v \in S$

$$
\text { let } X_{v} \leftarrow\left\{\begin{array}{lll}
1 & \text { if any call to } O(v, w) \text { for } w \in N(v) \\
0 & 0 . \omega \text {. } & \text { returns "yes" }
\end{array}\right.
$$

- Output $\frac{n}{2 S} \sum_{v \in S} X_{v}+\frac{\varepsilon}{2} \cdot n$
note $|M|=\frac{1}{2} \sum_{v \in V} X_{v}$

$$
\begin{aligned}
& E[\text { output }]=E\left[\frac{n}{2 s} \sum_{v \in S} X_{v}\right]+\frac{\varepsilon}{2} n \\
&=\frac{n}{2 s} \sum_{v \in S} E\left[X_{v}\right]+\frac{\varepsilon}{2} n \quad E\left[X_{v}\right]=\frac{2|M|}{n} \\
&=\frac{M K}{\not 2 s \mid} \cdot \$ \cdot \frac{\mathscr{L}|M|}{\not M}+\frac{\varepsilon}{2} n \\
&=|M|+\frac{\varepsilon}{2} \cdot n
\end{aligned}
$$

$$
\left.\operatorname{Pr}\left[\left.\left\lvert\,\left(\frac{n}{2 s} \sum_{v \in s} x_{v}+\frac{\varepsilon}{2} n\right)-E[\text { output }]\right. \right\rvert\,\right] \geq \frac{\varepsilon}{2} n\right] \leq \frac{1}{3} \text { by }
$$

$$
\operatorname{Pr}\left[\left|\frac{n}{2 s} \sum_{v \in \Phi} x_{v}-|M|\right|\right.
$$

additive
Chernoff Hoeffary
Chis with prob $\geq 2 / 3, \quad|M| \leq$ output $\leq|M|+\varepsilon \cdot n$

Implementing the oracle:
Main idea: figure out "what would greedy do on (v, ω) ?" how? which input order? do we need to figure out all past choices?

Is $(b, e) \in M$?
adjacent edges!

$$
\begin{aligned}
& (b, c),(a, b),(d e),(e, f) \\
& 1 \\
& \underbrace{11}_{\substack{\text { comes } \\
\text { after } 10}} 5 \leq 6
\end{aligned}
$$

since (b, c) is $1^{\text {st }}$ edge considered

$$
\begin{aligned}
& (b, c) \in M \\
\Rightarrow & (b, e) \notin M
\end{aligned}
$$

Problem: Greedy is "sequential" + has long dependency chains? example:
 if you know graph is line bot doit know greedy order

Saving grace: assume random order Implementation of oracle: Input: edge e

Output: is $e \in M$?
Algorithm:

- recursively find all decisions for adjacent edges with lower ordering number
(do not need to Know what greedy did on higher order \#s since not considered before e)
- if any adj. edge with lower number is matched then e is not matched else e is matched

Problem: Greedy is "sequential" + has long dependency chains? example:

How to break length of dependency chains?
assign random ordering to edges
(ranks are numbers $\in[0,1]$)
example:

Is edge 0.5 in M?
recurse on 0.3
recourse on 0.1
no other adjacent edges so added to M
so 0.3 not matched
no need to recourse on 0,7
recurse on 0,4
recourse on 0.2
all of 0.2 's mors are bigger so

$$
\text { so } 0.4 \notin M^{0.2 \in M}
$$

So greed y puts $0,5 \in M$

Implementation of oracle:
assume ranks $r_{e}^{\left(k^{(0,)}\right.}$ assigned to each edge e
to check if $e \in M$:
$\forall e^{\prime}$ neighboring e,

- if $r_{e}<r_{e} \quad r e c u r s i v e l y ~ c h e c k ~ e l ~$
+ if $e^{\prime} \in M$, return " $e \notin M^{\prime \prime}+$ halt
else continue
return " $e \in M$ "
A since no e^{\prime} of lower rank is in M

Correctness: exactly following greedy so follows from correctness of greedy - ?

Query complexity:
Claim expected \# queries to graph per
oracle query is 2 Ocd)
Claim + Parnas-Ron oracle reduction \Rightarrow total query complexity
$\forall e^{\prime}$ neighboring e,

Pf of Claim:

- if $r_{e},<r_{e}$ recursively check e^{\prime}

$$
+ \text { if } e^{\prime} \in M \text {, return " } e \notin M^{\prime \prime}+\text { halt }
$$

else continue

- Consider query tree:
return " $e \in M$ "
root node labelled by original query edge children of each node are all adjacentedjes
- will only go down paths that are decreasing in rank

$$
=\frac{1}{k!}
$$

length K explored]

- \#edges in original graph at dist $=K$ in tree is

$$
\leq(2 \Delta)^{k}
$$

- EEtedjes explored at dist $k] \leq \frac{(2 \Delta)^{k}}{k!}$
- E[total \# edges explored $] \leqslant \sum_{k=0}^{\infty} \frac{(2 \Delta)^{k}}{k!}$

$$
\leq \frac{e^{o(\Delta)}}{\Delta}
$$

Property Testing
examples of p :
 bipartite no smallicuts no triangles connected

Can we distinguish graphs with property P from for from P ?
e.g. G is ε-far from planar if must remove $\geq \varepsilon \cdot \Delta \cdot n$ edges to make it planar

