
Lecture 5 :

• Greedy algorithms vs
.

Sub linear time :

the case of maximal matching

• Property testing :

is the graph planar ?



Sub linear time algorithms via greedy :

We focus on problem of

estimating size of maximal matching (MM)
in degree bounded graph

Wh)
.

?
step towards approx maximum matching

• relation to Vertex cover Cvc)

VCZMM ← for each edge in matching,
ZI endpt must be in VC
-

these are disjoint!

VCE 2. MM ← put all MM nodes in VC

if
any edge not covered by Vc
then can add edge to MM

violating maximally, of MM.



Note (similar to VC)

nif degree so ,
maximal matching Zang

why ? run process :

place edge Cup) in MN

delete other edges of a TV

( E 28) which can no

longer be in matching

Greedy sequential Matching Algorithm :

µ ← A
tf e -

- Ghee
if neither u or v matched

add e to M

Output M

Observation :

M is maximal

why ? if en IEM either u or V already
hit matched earlier



0radeReductionframewo.kz :

Assume given deterministic
"

oracle
" Ole)

which tells you
if e EM or not in one step

Algorithm to estimate IMI :

• § ← set of 5-{a nodes chosen iid

•V-ve.SI
let q←{

I if any call to Ofyw) for wear)
returns "yes

"

O O
.

W
.

• Output hzssfqgxv + Finn
in
since 2 nodes

makes underestimate

matched for unlikely
each edge in M



• § ← set of 5- Is nodes chosen iid

of output : •we

y←g
, if any call to

Ohr,w) for WENK)
returns "yes

"

O O
.

W
.

"

II;"
"

a good •o⇒a÷%¥tEapproximation ? )

note IMI -- I§evXv
El output ) =E[ Is Xv) + fin

= n
←

but

Is§sEEXv) + Ein
Ea,# = 2111

n
w

=¥y.SI#yMltEz.n fraction of
matched nodes

= 1Mt Earn

Pr [ I # fresh + I. n) - Eloutputlz g. n]
11

Pr[ lnzssresxr - IMI ? In ] 'T by ddh.li?ive.*e..*any
Claim with prob 2213, IMK output ' Hylton



Implementing the oracle :

Main idea : figure out
"

what would greedy do on trad ?
"

-

how ?

which input order ?
do we need to figure
out all previous nodes ?

%
Is ( b. e) EM ?O

/ adjacent to

§ b C ( b. c) le , d) left laid
"

10 I 5 6 11
←✓ Tagg b f w

a 8-0 greedy considers 1st

5)e I ftp.utslb, c) into M

O
O so Cb, e) IEMd l ⇒ no need to consider

0 rest of graph

no

problem : Greedy is
"

sequential
"

t has long dependency chains ?

example :
FIFTY

" -

T.rs. §
even if you know

•-0*-0*-0 . . . •*

graph is line
,

2131 2 3 Y 212 is edge odd or

even in order ?



Implementation of oracle : Input : edge e

Output : is e EM?

Algorithm :
• recursively find all decisions for

adjacent edges with lower ordering number

( do not need info on adjacent edges with

higher number since greedy doesnt
consider before e )

- if any adj. edge with lower number

is matched then e is noetmathed
else e is matched

problem : Greedy is
"

sequential
"

t has long dependency chains ?

example :
FIFTY

" -

T.rs. §
even if you know

•-0*-0*-0 . . . .#

graph is line
,

2131 2 3 Y 212 is edge odd or

even in order ?



How to break length of dependency chains ?

assign random ordering to edges

example :

%
:#

O O

o.*m£ox
0

Is edge 0.5 in M?

are curse on 0.3

re curse on Oil

- no other adjacent edges so 0.1 matched
- therefore 0.3 not matched

• no need to reverse on 0.7 since 0.5<0.7

• re curse on 0.4

re curse . on 0.2

0.8 comes after 0.2
0.4

" " it

so 0.2 matched
80 0.4 not matched

• 0.5 matched



Implementation of oracle :

assume ranks re assigned to each edge e

to check if e EM :

f e ' neighboring e ,
• if re , are recursively check e

'

t if e' EM
,

return
"

e¢M"shalt

else continue
return "

ee M
"

T since no e
' of lower rank than

e is in M

Correctness :

follows from correctness of greedy

Query complexity :
claim expected# queries

to graph. per
oracle query is 20cal

(taint Parnes - Ron reduction ⇒ total query complexity is 2¥
)



F e ' neighboring e ,
• if re , are recursively check e

'

t if e' EM
,

return
"

e # M
"

shaltPfofm : *me÷:n¥
° Consider query tree :

root node labelled by original queryedge
children of each node are adjacent edges eo

Be

• will only query paths that are 4¥23
monotone decreasing in rank !! ÷

:*
,

!I"•
• Pr [ given path of length K explored] £ M ÷÷:

"

"

÷
& O D

-

-

I .÷iiii÷ .

.

( KH) ! * • •

• # edges in original graph of distaste in tree is

at most dk

• El# edges explored at dist -- K ] Edt
Htt) !

. E [ total # edges explored] E ¥7947,1
,

E ed
a

Bs



Property's
examples of piana.

All graphs
bipartite

÷:÷÷÷.

Can we distinguish graphs with property P

from fare from P?

e.g . G is E- far from planar
if must remove Z E - on

edges to make it planar



Todaiyrnexttime :

test planarity in time independent of n
( but exponential in E)

for graphs with max degree o

what is a planar graph ?
Can be drawn on plane sit, edges don't intersect

-Tf
k
, It. if.IE. Yes

1g, :* µ%*I
.

No ? actually, yes
:E7FID

is, is. :*:*. no !



Cool characterization of planar graphs :

def
.

It is

"

minor
" of G if

can obtain H from G via

vertex removals
, edge removals or

edge contractions

FEE ⇒ IE .
contract

Minor closed properties :

Let P be a set of graphs
e. g . F- planar graphs ← minor - closed

P= bipartite graphs ← not minor-closed

!

P is
"

minor closed
" if

f GEP then all minors of

G are in P



def
.

It is

"

minor
" of G if

h families :
can obtain It from G via

vertex removals
, edge removals or

a:
""

!! "!" - minor - free "e%÷÷÷÷t¥if H not a minor

of G

Thin (Kuratowski)

G is planar iff Gis Kzptks. minor free

another example : bounded tree width ( there are more
.. . )

Really cool theorem : [Robertson & Seymour]

Every minor-closed property is expressible
as a constant # of excluded minors

.



Testing Planarity :
-

Can't hope to distinguish
o-a-a-o-o-o-o-o-ofromo-a-o-a.no?#f7E.-o-o-o
in sub linear time !

defy G is
"

E - close to H - minor - free "

if can remove a- E- on edges to

make it H - minor free

specifically :

def G is
E -close to planar iff

can remove E E. on edges to make it

planar{ kz.tk- free ⇐ equivalent
else Gis E - far

God " Give
! ! g planar , PASS { wtphrob
. if G E- far from planar , FAIL 7213

-

arbitrary const Z'In



Panter : use nice property of Planar

(all all H-minor free) graph families
.

Can always remove small fraction of edges
-

EE

t break up graph into tiny connected components
in

⇐ const

def
.

G is
"

leak) - hyper finite
" if

can remove E En edges r

remain with connected components of

size Ek

Usefulthm
Given H

,
F const CH sit

.

V veal
, every H - minor - free graph G

of deg so is ( so , 9¥ ) - hyper finitein

remove

Econ nfomponowts of size OLED
edges no dependence on h



not subgraphs of It - minor free graphs
are also H - minor free

,
so atso hyperfine

but only remove # edges in proportion to

# nodes in subgraph
⇒ can recuse t break up

further!

hyperfinegraphs


