
Lecture 6 :

Property Testing :

is the graph planar ?



Property's
examples of piana.

All graphs
bipartite

÷:÷÷÷.

Can we distinguish graphs with property P

from fare from P?

e.g . G is E- far from planar
if must remove Z E - on

edges to make it planar



Today's goal :

test planarity in time independent of n
( but exponential in E)

for graphs with max degree o

what is a planar graph ?
Can be drawn on plane sit, edges don't intersect

-Tf
k
, It. if.IE. Yes

Ka, :* k.gs#d
.

No ? actually, yes
.FI?FID

is, is. :*:*. no !

Thin (Kuratowski)

G is planar iff Gis Kzptks. minor free



Testing Planarity :
-

Can't hope to distinguish
o-a-a-o-o-o-o-o-ofromo-a-o-o-o.fi#IE.-o-o-o
in sub linear time !

def G is
E -close to planar iff

can remove E E. on edges to make it

planar{ 15,4k£- free ⇐ equivalent
else Gis E - far

God " Give
! ! g planar , PASS } "throb
. if G E- far from planar , FAIL 773

-

arbitrary const Z'In



Plan for lester : use nice property of Planar graphs
# .

Can always remove small fraction of edges
-

EE

t break up graph into finny connected components
⇐ const

o : ÷i÷÷÷÷÷÷:i÷÷÷:
det

.

G is
"

Ce,k) - hyper finite
" if

can remove E En edges r

remain with connected components of

size Ek



def
.

G is
"

Ce,k) - hyper finite
" if

can remove E En edges r

remain with connected components of
mm
, g,,e€,
rn

Example : mxm grid graph

theft
Xi



V

example : Grid graph µ
break into components'

oo±÷÷÷÷÷÷÷÷÷
.④f#e#I¥¥¥:÷÷÷÷÷



def
.

G is
"

Ce,k) - hyper finite
" if

can remove E En edges r

remain with connected components of

Usefulthm
siz€,

V veal
, every planar graph G

of deg Eo is CEO , ¥) - hyper finitein

remove

Econ Tomponents of size OLED
edges no dependence on h

1

not subgraphs of planar graphs
are also planar, so abe hyperfine
but only remove # edges in proportion to

# nodes in subgraph
⇒ can re curse t break up further !



Why does hyper finiteness help in testing ?

Plan for testing paradigm : g

1) Partition graph G into G
'

- Only const size corn . comp . remainh÷÷÷¥÷÷: :*:÷:÷::÷..
remove

If the2) If G
'

is close to having property, G
'

fee blue

so is G edges
- so test G

'

by picking random -

'
Ii 'm:{ go:p:nenthetspee.ipnser.int they

④

④

Easy to test since

collection of const

sized graphs ! !



G

1) Partition graph G into G
'

- only const size corn . comp . remain

h÷÷: moi: :÷÷:÷::÷..
remove

2) If G
'

is close to having property, HII blue
so is G edges

- so test G
'

by picking random
'
Ii:{ go:p:nuts: ;:;÷; they

141
LIT

Easy to test since

collection of const

sized graphs ! !
-

How to determine G
'

?

- need " local
"

(sub linear) way to figure out

if edge is
" blue

" ( between components) or
"

green
"

( inside component)

-

will do even better !
l

give oracle that tells
you

"

name

"

of

component for each node



G""""""
in:p:p:: : :D::O. isparta'm "?

..
sit

.

trev n PATEK
(2) PhD connected

t it f is H - minor free -

(with probe%) (3) 19144 EEL
Pla)tPluB/EE¥}y

few edges
cross partitions

Algorithm given Partition Oracle :

I
.
Does partition oracle give partition that

" looks right
"

?
e. g. few crossing

edges
• I ← estimate of # edges lay) St . PlattPCD

to additive error E Ign (with prob of failure Eto)
• if I 7 Ige on , output

"

FAIL
"

a halt

←
these choose

random

It
.

Test random partitions
partitions

^ Choose is
'
-

-Olk) random nodes

- it for any SE I
,
Pls)Zk or PCs) notplanar
-

reject that constant size
K-- Octa)

TI
. Accept anything that passed upto this point so easy to

test



Runtime ( given oracle) :

Parti : Otta) calls
Parti : Oct . ok) -- Offs)

TT
Isil calls for BFS

on component of size Ek -

- Offa)



Algorithm given Partition Oracle :

I
.
Does partition oracle give partition that

" looks right
"

?
e. g. few crossing

edges
• I ← estimate of # edges lay) St . PlattPCD

to additive error E Ign (with prob of failure Eto)
• if I 7 Ige on , output

"

FAIL
"

a halt

←
these choose

random

It
.

Test random partitions
partitions

^ Choose is
'
-

- Olk) random nodes

- it for any SE I
,
PLDZK or PCs) not planar
-

reject that constant size
K-- Octa)

T1
. Accept anything that passed upto this point so easy to

test
#

Behavior (assuming P always
" correct) :

• if G is planar :
with prob 29/10

1) EEE ) ⇐ Eff t

sampling bounds (Chernoff Hoeffding)⇒ I e EIftEogI=3gEon
⇒ algorithm doesn't fail stage I with prob > 9/10

2) tf sell PCs) is planar
⇒ algorithm never fails stage I

⇒ pass



Algorithm given Partition Oracle :

I
.
Does partition oracle give partition that

" looks right
"

?
e. g. few crossing

edges
• I ← estimate of # edges lay) St . PlattPCD

to additive error E Ign (with prob of failure Eto)
• if I 7 Ige on , output

"

FAIL
"

a halt

←
these choose

random

It
.

Test random partitions
partitions

" Choose is
'
-

- Olk) random nodes

- it for any SE I
,
PLDZK or PCs) not planar
-

reject that constant size
K-- Octa)

T1
. Accept anything that passed upto this point so easy to

test
#

Behavior (assuming P always
" correct) :

. if G is E - far from planar : let G- Kla,heEIPhHRvB/

Case I C > Een
- 2

sampling buds ⇒ I > EF - E = Zg Eon
⇒ output

"

fail
"

with probe 9/10

( see
÷¥⇐

Case 2 2
-

2

G' ← G with edges in C removed

since G is E- far from planar t G
'

is Ez -close
to G
,

G
'
must be Ea - far from planar



if G
'

is Ez - far from planar ,
must remove Z ⇒ edges
which touch Z Enz nodes

so with prob Z Enz , pick
node in

component which is not planarg

But how do we implement

P ?



Plan for designing Partition Oracle
-

:

1) Define Global partitioning
strategy ( not sub linear time)

2) Figure out how to implement

it locally
( only find partition of a

given node
,
not whole solution)



Useful Concept : "

Isolated
"

neighborhoods

d¥Gis"Cgk)-hyperfinik'Can remove E En edges r

remain with connected components ofgµa€
defy S is ( 8,14 - isolated nbrhd of node v

if i) Ves

2) S connected

3) 1st Ek
4) # edges connecting Sts is e 8. Ist

NOI : In hyper finale graphs , most nodes have 18,14- isolated nbrhds

obvious ?

- G hyper-finite ⇒ F partitioning BUT

will we run into trouble if there is 71

partition and we pick the wrong one ?

NO !
• condition (4) bounds may # cut edges per

component, whereas hyperfinite bounds lweightedlaverage



Globalpartitoningltgorthm ⇐ jahoigmenthp!.es, "
-

defy S is (8
,
k) - isolated nbrhd of node v

if i) Ves

2) S connected(%1fetdgeskconneotiystsises.IS#
• Let rinrn be nodes in random order

• p ← I
• For i-- I to n do

if ri still in graph then ¥¥Io¥
if F ( 8,14 - isolated nbhd of ri

in remaining graph
then S ← this hbhd (
else s ← { rig ← S is just one

node in this case
.

P← Pugs} hopefutbdoggenlgt.es
remove S t adjacent edges frm graph

Does this give partition with few crossing edges ?
• if s ← ( or ,k) isolated nbhd

,
contributes told edges

overall Ed n
• else S is one node : hopefully not often !



Lemmy if G
'

subgraph of hyper -finale graph G

St
.
G

'

has z Sn nodes then E Ezo fraction

of nodes in G
'

dont have ( 8,14 - isolated rebinds

for 8=430
K -

- ( E3)

Pfidea : f planar ⇒ G
'

planar ⇒ G' hyperfine
←

F partition sat
.
most nodes in G

'

are in

( K,8) - isolated nbhd

t

rn. randomly chosen node in G
'

µ

Whp ri in ( K,8) - isolated nbhd
.

⇒ not too many
"

singletons"
1B



Localsimulationofpartihoningorade : : !:P:p
'

pay
•

assume access

to random
• recursively compute PEW] few St

.

foth rr
r : V→ Cn)

•

w dist Ek from V w
random

•

pw err
' ' smaller rank"

ranking of
nodes

• if I w sit
.
ve Pcw)

then p[v]=P¢w]

else
,

look for ( K,8) - isolated nbhdofv

( ignoring any
nodes which are alreadyin

a partition PED for any smaller ranked a)
if find one

, PETE this nbhd

else Paid ← Iv}

Using query tree analysis
0¥)

Query Complexity : as in last lecture ⇒ 2d for keofyes)
( how many paths of length K survive)

but can
do much better ;

d 01kg
- Cky

possible


