Lecture 6:

Property Testing:

is the graph planar?

Today's goal:

test planarity in time independent of n (but exponential in E)

gaphs with max degree & for

What is a planar graph? Can be drawn on plane s.t. edges don't intersect Kg A Yes K22 Z Ky X NO? actually, yes Z K333 🌺 K5 🦊 NO 1 Thm [Kuratowski] G is planar iff G is K33 + K5 minorfree

lesting Planarity: Cany hope to distinguish in sublinear time!

def 6 is E-close to planar iff can remove 5 E.Din edges to make it Splanar Seguivalent $(K_{3,3} + K_5 - Free$ else Gis E-far

Goal! Given G if if G planar, PASS ξ with prob G ε-far from planar, FAIL 33/3 arbitrury crust z 1/2

Plan for tester: use nice property of Planar graphs Can always remove small fraction of edges EE t break up graph into tiny connected components Sconst Gi Ì def. G is "(z, K) - hyperfinite" if Can remove $\leq En$ edges à remain with connected components of size EK

def G is "(E,K) - hyperfinite" if Can remove $\leq En$ edges & remain with connected Components of Size $\leq K$

Useful Thm

every planar graph G ¥ 0≤ €<1, 15 $(\xi:\Delta)$ ξ^{2} - hyperfinite remove $\xi_{\xi:\Delta:n}$ components of size $O(\frac{1}{\xi^{2}})$ edges no dependence on n of $dey \leq \Delta$

note subgraphs of planar graphs are also planar, so also hyperfimte but only remove # edges in proportion to # nodes in Subgraph Can recurse t break up further!

Why does hyperfiniteness help in testing? Plan for testing paradigm: G A Contraction 1) Partition graph 6 into 6' how - Only Const size Com. (omp. remain in sublinear - removed few edges (= E: A-n) time? - if carit do this, G is not H-minor free m 6 remove the few blue edges 2) If G is close to having property, so is G Const S - so test G' by picking random time Components + seeing if they have the property

62 62 63 69 69 Easy to test since collection of const sized graphs !!

G 1) Partition graph & into 6' how in Sublinear - removed few edges (= E:A-n) time? - if cart do this, G is not H-minor free G remove the <u>few</u> blue edges 2) If G' is close to having property, so is G Const S - so test G' by picking rundom time Components + seeing if they have the property 64 69 69 e O Easy to test since Collection of const sized graphs !! How to determine G'? - Need "local" (sublinear) way to figure out if edge is "blue" (between components) or "green" (inside component) - will do even better! give oracle that tells you "name" of Component for each rode

Partition Oracle: input; node v output; name of v's partition P[v] s.t. VveV (1) P[v]EK (small) (2) P[v] Connected t if G is H-minor free $(w, th prob = \frac{9}{0})$ (3) $| \{(u, v) \in E| P(u) \neq P(v)\} \leq \frac{\varepsilon \leq n}{2}$ few edges Cross partitions Algorithm given Partition Oracle: I. Does partition oracle give partition that "looks right"? e.g. few crossing edges $\hat{f} \in estimate$ of # edges (u,v) 5.t. $P[u] \neq P[v]$ to additive error $\leq \underline{\epsilon} \geq n$ (with prob of fulline $\leq \frac{1}{10}$)

Runtime (given oracle): PArtI: O(ta) cells $P_{\text{avt}} \Pi : O(\frac{1}{\epsilon} \cdot \Delta \cdot k) = O(\frac{\Delta}{\epsilon^3})$ 131 Calls for BFS on component of size = 6(===)

Algorithm given Partition Oracle:
I. Does partition oracle give partition that "looks right"?
e.g. few crossing
edges

$$\hat{f} \in estimate of # edges (u,v) 5t. P(u) # P(v)
to additive error $\leq \underline{E} \geq n$ (with prob of failure $\leq \frac{1}{10}$)
 $\hat{f} = \frac{3}{8} \underline{E} \geq n$, output "FAIL" & halt
 \underline{I} . Test random partitions
 $\hat{f} \in O(\frac{1}{2})$ random nodes
 $\hat{f} = O(\frac{1}{2})$ random nodes
 $\hat{f} = O(\frac{1}{2})$ random $\frac{1}{10} = \frac{1}{10}$
 \underline{I} . Test random \underline{I} and $\underline{S} \in S$, $P[s] \equiv k$ or $P[s]$ not planar
 $\hat{f} = O(\frac{1}{2})$
 \underline{I} . Accept anytheny that passed up to this print so easy to
 \underline{I} .$$

Behavior (assuming P always correct):
• if
$$G$$
 is planar:
1) $E[\hat{f}] \leq \frac{\sum n}{4}$
 $Simplify bounds (Cherroff/Hoeffding) \Rightarrow \hat{f} \leq \frac{\sum n}{4} + \frac{\sum n}{8} = \frac{3}{3} \sum n$
 $\Rightarrow algorithm doesn't fail stage I with porob = 9/10$
2) $\forall s \in V P[s]$ is planar
 $\Rightarrow algorithm never fails stage I
 $\Rightarrow pass$$

Algorithm given Partition Oracle:
I. Does partition oracle give partition that "looks right"?
e.g. few crossing
edges

$$\hat{f} \in estimate of # edges (u,v) st. P(u) # P(v)
to additive error $\leq \underline{\epsilon} \geq n$ (with prob of failure $\leq \frac{1}{10}$)
 $\hat{f} = \frac{3}{8} \epsilon \leq n$, output "FAIL" \Rightarrow halt
these choose rundom
 f_{ege} choose $right$
I. Test random partitions
 \hat{L} . Test random partitions
 \hat{L} (hoose $S = O(\frac{1}{2})$ random nodes
 \hat{L} for any $S \in S$, $P[s] \equiv k$ or $P[s]$ hot planar
reject \Rightarrow halt
II. Accept anything that passed up to this print so case to
test$$

$$\frac{(ase 1)}{2} \qquad (1 + 2sin) = \frac{2}{2} \qquad (1 + 2sin) = \frac{2}{2} \qquad (1 + 2sin) = \frac{2}{3} \qquad (1 +$$

$$\begin{array}{c} \underline{Case 2} \quad \underline{C} \quad \underline{C} \quad \underline{E \Delta M} \\ \underline{G' \in G} \quad \underline{C} \quad \underline{$$

if f' is $\frac{2}{2}$ - far from planar, must remove = EDN edges Which touch = EN nodes So with prob $2 \leq n$ pick hode in Component which is not planar mdo we implement But how PS

Plan for designing Partition Oracle: 1) Define <u>Global</u> partitioning Strategy (not sublinear time) 2) Figure out how to implement it locally (only find partition of a given node, not whole solution)

Lemma if G' subgraph of hyperfinite graph G st. G' has $\geq Sn$ nodes then $\leq \frac{\epsilon}{30}$ fraction of nodes in 6' don't have (S,K)-isolated nbhds for $\delta = \epsilon/30$ $K = \Theta(\epsilon^3)$ Pfidea: G planar => 6' planar => 6' hyperfinite E partition s.t. most nodes in G'are in (K,8)-isolated nobid ri randomly chosen node in G' whp ri in (K,S)-isolated nbhd. => not too many "singletons"

Local Simulation of Parthoning Oracle: input V
. output P[v]
. assume access
to rendom
. recursively compute P[w] + w st. fetn
$$r_v$$

. w dist $\leq k$ from V
. $r: V > En]$
. w dist $\leq k$ from V
. $r_v \leq r_v$
. "smaller rank"
. $random$
. $r_w \leq r_v$
. "smaller rank"
. $random$
. $r_w \leq r_v$
. "smaller rank"
. $random$
. ran