Lecture \%:

Property Testing:
is the graph planar?

Property Testing
examples of p :
 bipartite no smallicuts no triangles connected

Can we distinguish graphs with property P from for from P ?
e.g. G is ε-far from planar if must remove $\geq \varepsilon \cdot \Delta \cdot n$ edges to make it planar

Today's goal:
test planarity in time independent of n
(but exponential in ε)
for gaphs with max degree Δ

What is a planar graph?
can be drawn on plane sit. edges don't intersect

Yes

NO? actually, yes NO 1

The [Kuratowski]
G is planar iff G is $k_{3,3}+k_{5}$ minorffee

Testing Planarity:
Can 4 hope to distinguish

from

in sublinear time!
def G is ε-close to planar iff
can remove $\leq \varepsilon \cdot \Delta \cdot n$ edges to make it

$$
\left.\begin{array}{rl}
& \left\{\begin{array}{l}
\text { planar } \\
K_{3,3}+K_{5}-f r e e
\end{array}\right.
\end{array}\right\} \text { equivalent }
$$

Goal: Given G

- if G planar, PASS
- if $G \varepsilon$-far from planar, FALL $\underbrace{2 / 3}$ arbitrary canst $\geq 1 / 2$

Plan for tester: use nice property of Planar graph ls

Can always remove $\underbrace{\text { small fraction of edges }}_{\leq \varepsilon}$

* break up graph into $\underbrace{\text { ting connected Components }}_{\leq \text {const }}$

def. G is " (ε, k)-hyperfinite" if
Can remove $\leq \varepsilon n$ edges γ
remain with connected components of

$$
\text { size } \leq K
$$

def. G is " (ε, k)-hype rfinite" if can remove $\leq \varepsilon_{n}$ edges σ

$$
n=m^{2}
$$

Example: $m \times m$ grid graph
break into
Xxl components

\#edges crossing Component boundaries:

$$
\begin{aligned}
& \leq \# \text { components } \times \text { "surface } \\
& \leq\left(\frac{m}{l}\right)^{2} \times 4 \cdot l \leq 4 \text { area" }^{2} \\
& \text { pick } l=4 / \varepsilon \Rightarrow\left(\xi, \frac{16}{\varepsilon^{2}}\right)-h m_{1} \frac{l}{l}
\end{aligned}
$$

def. G is " (ε, k)-hyperfinite" if can remove $\leq \varepsilon_{n}$ edges σ remain with connected components of

Useful The
V $0<\varepsilon<1$, every planar graph G
of dey $\leq \Delta$ is $\left(\varepsilon \cdot \Delta, \frac{c}{\varepsilon^{2}}\right)$-hyperfinite
remove
$\leq \varepsilon \cdot \Delta \cdot n$
edges
Components of sire $O\left(\frac{1}{\varepsilon^{2}}\right)$ n_{0} dependence on n
note subgraphs of planar graphs are also planar, so also hyperfinte but only remove \#ledges in proportion to \# nodes in sobgraph
\Rightarrow Can recurse + break up further!

Why does ayperfiniteness help in testing?
Plan for testing paradigm:

1) Partition graph G into G^{\prime}
how in - only const size com. comp. remain
sublimer
time?
time? -if cant do this, G is not plan
2) If G^{\prime} is close to having property
so is G
const $\left\{-\right.$ so test G^{\prime} by picking random time Components + seeing if they have the property

remove V) the few blue edges

Easy to test since collection of const sized graphs!!

1) Partition graph G into G^{\prime}
how $\begin{aligned} & \text { in }\end{aligned}$ - only const size com. comp. remain
ssublinaxi
time? - removed few edges $(\leq \varepsilon \cdot \Delta-n)$

- if cant do this, G is not planar

2) If G^{\prime} is close to having property
 have the property

Easy to test since collection of cons sized graphs!!

How to determine G^{\prime} ?

- need "local" (sublinear) way to figure out if edge is "blue" (between components) or "green" (inside compinent)
- will do even better!
give oracle that tells you "name" of component for each node

Partition Oracle:
input: node v
output: name of v's partition $P[v]$
sit. $\forall v \in V$
(1) $P[r] \leq k$
(small)
(2) $P[v]$ connected

* if G is planar

$$
(\text { with prob } \geq 9 / 10)
$$

(3) $\left.|\{(u, v) \in E \mid P(u) \neq P(v)\}| \leq \frac{\{\Delta u}{4}\right\}$
few edges cross partitions

Algorithm given Partition Oracle:
I. Does partition oracle give partition that "looks right"? e.g. few crossing
$\cdot \hat{f} \leftarrow$ estimate of $\#$ edges (u, v) st. $P[u] \neq P[v]$
to additive error $\leq \frac{\varepsilon \Delta n}{8}$ (with prob of fallove $\leq \frac{1}{10}$)

- if $\hat{f}>\frac{3}{8} \varepsilon \Delta n$, output "FAIL" $+h_{a} l t$
II. Test random partitions
these choose partitions portions
- Choose $S=O(1 / \varepsilon)$ random nodes
- if for any $\delta \in S_{\text {reject } \text {, halt }} P[s] \geqslant k$ or $\underbrace{P[s] \text { not planar }}_{\text {Constant size }}$ $K=O\left(1 / c^{2}\right)$
III. Accept anything that passed up to this point so easy to test

Runtime (given oracle):

$$
\begin{aligned}
& \text { Part I: } \quad O\left(\frac{1}{\varepsilon^{2}}\right) \quad \text { calls } \\
& \text { Part II: } \quad O\left(\frac{1}{\varepsilon} \cdot \Delta \cdot k\right)=O\left(\frac{\Delta}{\varepsilon^{3}}\right) \\
& \uparrow \uparrow \underbrace{\prime} \\
& \quad c_{a} l l s \text { for } B F s \\
& \quad \text { on component of size } \leq K=O\left(\frac{1}{\varepsilon^{2}}\right)
\end{aligned}
$$

Algorithm given Partition Oracle:
I. Does partition oracle give partition that "looks right"? e.g. few crossing

- $\hat{f} \leftarrow$ estimate of \# edges (u, v) st. $P[u] \neq P[v]$
to additive error $\leq \frac{\varepsilon \Delta n}{8}$ (with prob of faller $\leq \frac{1}{10}$)
- if $\hat{f}>\frac{3}{8} \varepsilon \Delta n$, output "FAIL" + halt
II. Test random partitions
these choose ruandion portions
- (Loose $S=O(1 / \varepsilon)$ random nodes
- if for any $\delta \in S, P[s] \geq k$ or $\underbrace{P[s] \text { not planantar sine }}_{\text {reject 'that }}$
$k=\sigma\left(k_{2}\right)$
III. Accept anything that passed up to this point so easy to
test

Behavior (assuming P always "correct):

- if G is planar:

1) $E[\hat{f}] \leq \frac{\varepsilon \Delta n}{4}$
sampling bounds (Chernoff/Hoeffding) $\Rightarrow \hat{f} \leq \frac{\varepsilon \Delta n}{4}+\frac{\varepsilon \Delta n}{8}=\frac{3}{8} \varepsilon \Delta n$
\Rightarrow algorithm doesn't fail stage I with prob $\geq 9 / 10$
2) $\forall s \in V P[s]$ is planar
\Rightarrow algorithm never fails stage II
\Rightarrow pass

Algorithm given Partition Oracle:
I. Does partition oracle give partition that "looks right"? e.g. few crossing
$\cdot \hat{f} \leftarrow$ estimate of $\#$ edges (u, v) st. $P[u] \neq P[v]$
to additive error $\leq \frac{\varepsilon \Delta n}{8}$ (with prob of failure $\leq \frac{1}{10}$)

- if $\hat{f}>\frac{3}{8} \varepsilon \Delta n$, output "FAIL" + halt
II. Test random partitions
- Choose $S=0(1 / \varepsilon)$ random nodes
- if for any $s \in S, P[s] \geq k$ or $\underbrace{P[s] \text { not planar }}_{\text {Constant siam }}$
- if for any $s \in S, P[s] \geq k$ or $\underbrace{P[s]_{\text {not plat that }}}_{\text {constant size }}$
these choose partiontions portions
III. Accept anything that passed up to this point

$$
\begin{aligned}
& \text { So easy to } \\
& \text { test }
\end{aligned}
$$

Behavior (assuming P always "correct):

- if G is E-far from planar: \mid et $C=|\{(u, v) \in E \mid P(w)=P(v)\}|$

Case $1 \quad C>\frac{\varepsilon \Delta n}{2}$
sampling buds $\Rightarrow \hat{f}=\frac{\Sigma \Delta n}{2}-\frac{\Sigma \Delta n}{8}=\frac{3}{8} \varepsilon \Delta n$
\Rightarrow output "fail" with prob $\geq 9 / 10$

Case $2 \ll \frac{\varepsilon \Delta n}{2}$

$G^{\prime} \in G$ with edges in C removed
since G is \mathcal{E}-far from planar $+G^{\prime}$ is $\frac{\varepsilon}{2}$-close to G, G^{\prime} must be $\frac{\varepsilon}{2}$-far from planar
if G^{\prime} is $\frac{\varepsilon}{2}$-far from planar, must remove $\geq \frac{\varepsilon \Delta n}{2}$ edges which touch $\geq \frac{\varepsilon n}{2}$ nodes

So with prob $\geq \frac{\varepsilon n}{2}$, pick node in
Component which is not planar

But how do we implement
P?

Partition Oracle:
input: node
output: name of v's partition $P[v]$
st. $\forall v \in V$
(1) $P[r] \leq k$
(2) $P[v]$ connected

* if G is planar

$$
\text { (with prob } \left.\geq 9 / 10) \quad(3)|\{(u, v) \in E \mid P(u) \neq P(v)\}| \leq \frac{\{\Delta n}{4}\right\}
$$

few edges cross partitions

Plan for designing Partition Oracle:

1) Define Global partitioning

Strategy (not sub linear time)
2) Figure out how to implement
it locally
Sonly find partition of a given node, not whole solution)

Punttion Oracle:
input: node v
output: name of i's portion $P[v]$
st. $\forall v \in V$
(1) $P[r] \leq k$
(small)
(2) $\mathrm{P}[r]$ connected

+ if G is H-minor free

$$
\begin{array}{r}
\text { (with prob } \left.\left.\geq 9 / 10 \text {) (3) }|\{(u, v) \in E \mid P(u) \neq P(u)\}| \leq \frac{\{\Delta n}{4}\right\}\right) \\
\text { few edges } \\
\text { cross partitions }
\end{array}
$$

Useful Concept: "Isolated" neighborhoods
def. G is " (ε, k)-hyperfinite" if can remove $\leq \varepsilon_{n}$ edges σ remain with connected components of size $\leq K$
def S is (δ, k)-isolated nbrhd of node v
if 1) $v \in S$
2) S connected
3) $|s| \leq k$
4) \# edges connecting $s+\bar{s}$ is $\leq \delta \cdot|s|$ coot

Note: In hyperfinite graphs, most nodes have (δ, k)-isolated nbibhts obvious?

- G hyperfinite \Rightarrow partitioning but sower partitions might have lots of edges
but on average, they dunt have many so most dint have many
- is it an issue that there could be manypartitions?

Global Partitioning Algorithm \leftarrow a mental thought
def S is (δ, k)-isolated nbirhd of node v
if 1) $v \in S$
2) S connected
3) $|s| \leq k$
4) \#edges connecting $s+\bar{s}$ is $\leq \delta \cdot|s|$

- Let $r_{1} \cdots r_{n}$ be nodes in random order
. $P \leftarrow Q$
- For $i=1$ to n do
if r_{i} still in graph then
use $\delta=\frac{\varepsilon \Delta}{4}$ if $\exists(\delta, k)$-isolated ubhd of r_{i}
in remaining graph
then $S \leftarrow$ this hold

ripped out ap of G
else $S \leftarrow\left\{r_{i}\right\} \quad$ "singleton"

$$
P \leftarrow P \cup\{S\}
$$

remove S a adjacent edges from graph
Does this give partition with few crossing edges?

- if $\delta \leftarrow(\delta, k)$ nbhd, contributes $<\delta|\delta|$ edges, overall $\leqslant \delta n$ - else S is one node, no bound from these additions hopefully 'doessit happen often

Lemma if G^{\prime} subgraph of planar graph G
then $\leq \frac{\varepsilon}{30}$ fraction of nodes in G^{\prime} become singletons

Pf idea: (weaker theorem) def S is (δ, k)-isolated nbirhd of node v

- in loop, cull
graph $G^{(a)}$.
- $G^{(i)}$ is planar $\Rightarrow \begin{array}{r}\text { hyperfinite } \Rightarrow \exists\left(\frac{1}{60}, k\right) \text {-partition of } G^{(i)} \text { into } G^{(i) \prime}\end{array}$ (new partition at each loop)
assign each node in partition S the weight $\frac{\text { \#edges Connecting } \delta+\bar{S}}{|S|}$
low total weight of nodes in $S=$ \#edges connecting $S+5$
wt total weight of modes in $G^{(\lambda)}=2$. . removed edges in partition
$\begin{aligned} & \text { notes } \\ & \text { are } \\ & \text { not }\end{aligned} \left\lvert\, \begin{aligned} & \text { average weight of node } \leq \frac{2}{60}=\frac{1}{30}\end{aligned}\right.$
not \mathbb{H} nodes with weight $\geq \frac{1}{30} \cdot \frac{30}{\varepsilon}=\frac{1}{\varepsilon}$ is at most $\frac{\varepsilon n}{30}$ by Markovis $\ddagger=\frac{1}{60} \cdot n$
sing tins
r_{i} is either not in $G^{(i)}+$ therefore not in $G^{(i) /}$
or r_{i} is uniform node in $G^{(i)}+G^{(\lambda)}$ so hits one of "low weight" nodes with prob $1-\frac{\varepsilon}{30}$
these are not singletons
Over all rounds/loops, expect that these are not singletons $\leq \frac{\varepsilon}{3}$ fraction become singletons.

Local Simulation of Partitioning Oracle: 'input V - output PEr]

- assume access to random
- recursively compute $P[\omega] \forall \omega$ st. fath r_{v}

$$
r: V \rightarrow[n]
$$

- w dist $\leq k$ from v

$$
r_{w} \leqslant r_{v}
$$

random ranking of nodes

- if $\exists \mathrm{s}$ st. $v \in P[\omega]$
then $P[v]=P[w]$
else, look for (k, δ)-isolated nbhd of v
(ignore any nodes removed by lower rubbed w)
if find one, $P[v] \leftarrow$ this nolo else $P[v] \leftarrow\{v\}$

Query Complexity:
use save analysis as for simulation greedy (as in 2 lectures ago)

$$
2^{o(k)} \text { for } k=0\left(1 / \varepsilon^{3}\right)
$$

can do much better! $d^{O\left(\log ^{2}\left(y_{\varepsilon}\right)\right)}$

