Lecture X: Property testing: is the graph planar? roperty Testing examples of P: planar bipartite All graphs no small cuts no triangles Cinnected E-cluse to P Graphs with property Can we distinguish graphs with property P from far from P? e.g. G is ε -far from planar if must remove $\geq \varepsilon \cdot \Delta \cdot n$ edges to make it planar

Today's goal: test planarity in time independent of n (but exponential in E) gaphs with max degree & What is a planar graph?

Can be drawn on plane s.t. edges don't intersect Yes Yes K22 X Ky NO? actually, yes D K_{3,3} & K₅ No 1 Thm [Kuratowski] G is planar iff G is K333 + K5 minorfree

lesting Planarity: Cany hope to distinguish in Sublinear time! def 6 is &-close to planar iff
can remove \(\xi \) \(\xi \) An edges to make it Splanar segulvalent

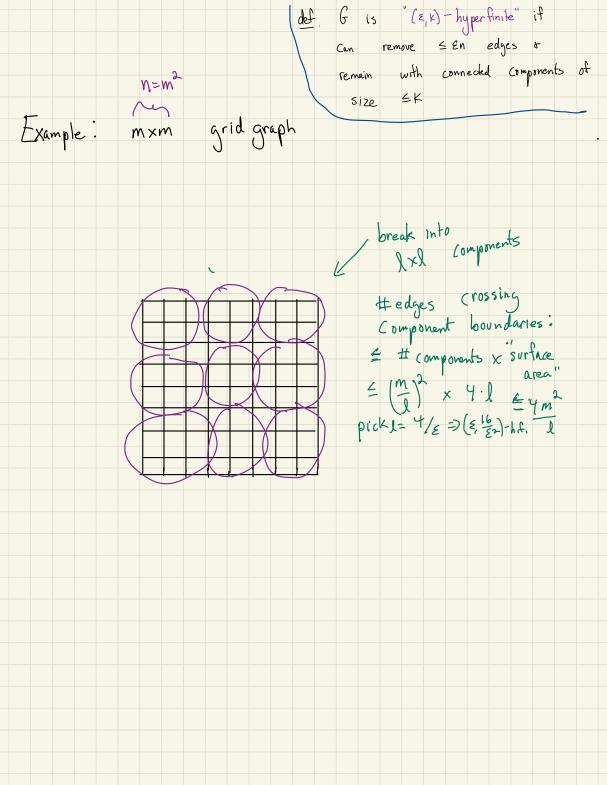
K3,3 + K5 - Free

else Gis E-far Goal! Given G

if G planar, PASS ξ with prob G ε-far from planar, FAIL 33/3 arbitrary crust z'/2 Plan for tester: use nice property of Planar Graphs Can always remove small fraction of edges

EE

The break up graph into tiny connected components def G is "(E,K) - hyperfinite" if Can remove $\leq \epsilon n$ edges & remain with connected components of size EK

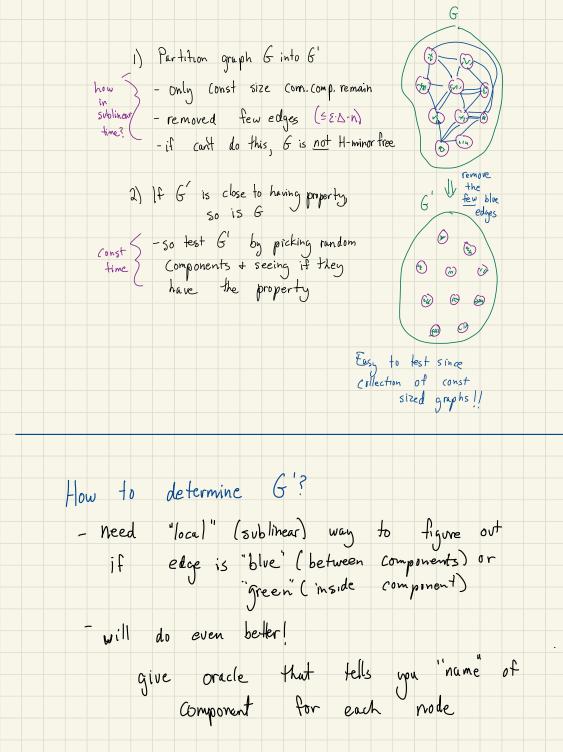


def. G is "(E,K) - hyperfinite" if Can remove $\leq \epsilon n$ edges at remain with connected components of $\delta i \lambda \epsilon = K$ Useful Thim every planar graph G Y 04 E < 1, of dey < & note subgraphs of planar graphs

are also planar, so also hyperfinte but only remove #1 edges in proportion to # nodes in Subgraph

Can recurse 4 break up further!

	Who) doe	es ly	per finis	leness	s he	lp in	testing?	,
	Plan	for	testing	Po	aradi	gm³			G
	1)	Partiti	on grap	h 6	into 1	6'			
how in subline time?	ar -	- Only - remo - if	Const wed f	size ew ed this,	Com. Iges 6 is	(omp. re (≤ E·∆ not H	emain -n) -minor f	ree (
			is close so is						remove the few blue edges
Const time	- {	-so te Comp have	st G' onents t the	by p seein	icking if erty	rando they)m		(a) (d)
				V	U			(u)	
							Collec	to test s tion of sized c	const raphs //



Partition Oracle: input; node vo output; name of v's partition P[v] s.t. Y reV (1) P[r] = (small)
(2) P[r] Connected t if G is H-minor free (with prob = 9/10) (3) | {(u,v) < E| P(u) + P(v) } < \(\frac{\xi}{4}\) \\ few edges cross partitions Algorithm given Partition Oracle: I. Does partition oracle give partition that "looks right"?

e.g. few crossing edges

of \leftarrow estimate of \pm edges (u,v) 5.7. $P(u) \pm P(v)$ to additive error $\leq \frac{\epsilon \Delta n}{8}$ (with prob of failure $\leq \frac{1}{10}$) . if $\hat{f} > \frac{3}{8} \text{ Edn}$, output "FAIL" & half these choose random these choose portitions.

These random partitions these choose portitions.

(hoose $S = O(\frac{1}{2})$ random nodes

if for any $S \in \mathcal{S}$, $P[s] \geq k$ or P[s] not planar reject that that constant size $k = O(\frac{1}{2})$ so easy to test Part I: $O(\frac{1}{\xi^2})$ calls

Part II: $O(\frac{1}{\xi^2})$ calls

Part II: $O(\frac{1}{\xi^2})$ calls

Calls for BFS

on component of size $\leq k = O(\frac{1}{\xi^2})$

Algorithm given Partition Oracle: I. Does partition oracle give partition that books right? e.g. few crossing edges • $\hat{f} \in estimate$ of # edges (u,v) 5,t. $P(u) \neq P(v)$ to additive error $\leq \frac{\epsilon \Delta n}{8}$ (with prob of failure $\leq \frac{1}{10}$) if $\hat{f} > \frac{3}{8} \epsilon n$, output "FAIL" 4 halt these choose random these choose portitions

• (hoose $S = O(\frac{1}{6})$ random nodes

• if for any $S \in S$, $P[s] \ge k$ or P[s] not planar reject 4 halt constant size $k = O(\frac{1}{6})$ Constant size K= OCK2) III. Accept anything that passed up to this point so easy to Behavior (assuming P always correct): 1) $E[\hat{f}] \leq \frac{\epsilon \Delta n}{4}$ with prob $\geq \frac{9}{10}$ Simplify bounds ((hernoff/Hoeffding) $\Rightarrow \hat{f} \leq \frac{\epsilon \Delta n}{4} + \frac{\epsilon \Delta n}{8} = \frac{3}{9} \epsilon \Delta n$ · if 6 is planar: => algorithm doesn't fail stage I with porob = 9/10 2) Y seV P[s] is planar => algorithm never fails stage II =) pass

Algorithm given Partition Oracle: I. Does partition oracle give partition that books right? e.g. few crossing edges • $\hat{f} \in estimate$ of # edges (u,v) 5,t. $P(u) \neq P(v)$ to additive error $\leq \frac{\epsilon \Delta n}{8}$ (with prob of failure $\leq \frac{1}{10}$) Test random partitions

(hoose S=O(1/2) random nodes

if for any SES, P[s] = k or P[s] not planar

reject that Constant size

k=O(1/2)

so easy i II. Accept anything that passed up to this point so easy to Behavior (assuming P always correct): · if G is E-far from planar: let C= [{(yv) et | P(w) = P(v)}] Case 1 C > EDN Simpling bods $\Rightarrow \hat{f} = \frac{\varepsilon \Delta n}{2} - \frac{\varepsilon \Delta n}{8} = \frac{3}{8} \varepsilon \Delta n$ > output fail" with prob = 9/10 Case 2 C < EAN 2 G' planar $G' \in G$ with edges in C removed since G is E-far from planar + G' is $\frac{E}{2}$ -close to G, G' must be E-far from planar

if 6' is \(\frac{\xi}{2}\)-far from planar, must remove $\geq \frac{\epsilon \Delta n}{2}$ edges

which touch $\geq \frac{\epsilon n}{2}$ nodes So with prob $\geq \frac{\epsilon_n}{2}$ pick node in Component which is not planar do we implement But how

Plan	For d	resigning	Partition	Oracle	-
1)	Define	Glo	obal r	Dartition	ning
		Strategi)	(not	sub linear time)
2)	Figure	. ovt	how	to	implement
		<u>loc</u>			
		(only f	and y	on tition	whole solution
		give	n node	, not	whole solution

Seful Concept: "Isolated neighborhoods def. G is " (ξ, k) - hyperfinite" if

Can remove $\leq \xi n$ edges to

remain with connected components of

Size $\leq k$ FS (8, K)-isolated north of node v det S 7; 1) res 2) S connected 3) |S| = k 4) # edges Connecting S & 5 is < 8. |s| Note: In hyperfinite graphs, most nodes have (8, K)-isolated norths Obvious? · 6 hyperfinite > 3 partitioning BUT will we run into trouble if there is 71 partition and we pick the wrong me? · Condition (4) bounds max * cut edges per Component, whereas hyperfinite bounds (weighted) average

Global Partitioning Algorithm = a mental thought process is (8,K)-isolated north of node v if 1) res 2) S connected 3) |S| = k 4) # edges connecting 5 + 5 is = 8. |s) · Let run he nodes in random order · P = 0 • For i=1 to n do vse $\delta = \frac{\epsilon \Delta}{4}$ K=0(1/22) if r still in graph then if 3 (S, K)-isolated nbhd of S. in remaining graph

Then $S \leftarrow this nbhd$ S is just one nude in this case hopefully doesn't happen often! else S < {ris P= PU {53 remove S + adjacent edges from graph Does this give partition with few crossing edges? · if S = (8,K) isolated Nobel, contributes \(\lambda \lambda \lambda \lambda \) overall \(\lambda \lambda \) n · else 5 is one node: hopefully not often!

Lemma if 6' subgraph of hyperfinite graph 6 St. 6' has = 8n nodes then $\leq \frac{\epsilon}{30}$ fraction of nodes in 6' don't have (8, K)-isolated nbhds for $\delta = \epsilon/30$ $k = \Theta(\epsilon^3)$ Pfidea: 6 planar => 6' planar => 6' hyperfinite 3 partition st. most nodes in 6' are in (K,8)-isolated nobld randomly chosen node in 6' whp ri in (K,8)-isolated nbhd. => not too many "singletons"

Simulation of Partitioning Oracle · input V · assume access to random · recursively compute P[w] +w st. for Ty L: 1->["] · w dist <k from V · rw = r 'Smaller rank" random ranking of nodes ·if 3 w s.t. veP[w] then P[v] = P[w] else, look for (K,8)-isolated nobal of v (ignoring any nodes which are already in a partition P[u] for any smaller ranked u) if find one, P[v] = this nobad else P[v] < {v} Query Complexity: as in last lecture $\Rightarrow 2$ for $k = \Theta(Y_{\epsilon}^3)$ but can do much betken: but an do much better:

do(log2 (1/E))

possible