

Adjacency Matrix model G represented by matrix A st. con query A in One step $A = \begin{bmatrix} A_{ij} \\ A_{ij} \end{bmatrix}$ $if \quad (ij) \in E$ $0 \quad 0 \quad . \quad .$ Distance from property P: def G is E-far from P if must change = E.n² entries in A to turn G into member of P Testing "sparse" properties : all graphs are 2-close to connected in this model => trivial tester outputs "PASS" w/o looking at gruph

natural representation notion of distance Graph type max degree EE.N. Edges charefd EE.N. '' '' adjacency list \bigtriangleup Spurse Previously adjacency matrix Now γ dense Should be easier to detect 2.0n E.n2 N^2 DN

Bipartiteness:

7. Can color nodes red/blue st no edge monochromatic equivalent $f \in E$ st. $u, v \in V_1$ definitions (u, v) or $u, v \in V_2$ V, V not bipartite => + (V,V)] "violating edge" E-far from bipartite: (definition) · must remove > E.n² edges to make bipartite • \forall partitions $V = (V_1, V_2)$, $\supset \varepsilon \cdot n^2$ violating edges Cyvivalent

Testing Algorithms: G • Testing <u>exact</u> bipartiteness; e.g. BFS Ø · Proposed testing algorithm: Goldreich Goldwassor Rnn . Pick sample of nodes of size $O(\frac{1}{\epsilon} \log \frac{1}{\epsilon})$ ignore nodes not in sample ignore edge st. Zleadpt is Not in sample · Consider induced graph on sample E • If bipartite, output PASS else output FAIL E.g. BFS This actually works !!

A first attempt at a proof?

if G bipartite, induced graph is bipartite, so algorithm Passes
if G E-far from Dipartite:
must remove
$$En^2$$
 edges to make it Dipartite
equivalently:
 H partition V_1, V_2 have $Z En^2$ violating edges $(Z E fruction of stats in adjunction)$
 H partition V_1, V_2 have $Z En^2$ violating edges of stree $Z O(\frac{1}{2} \log 3)$
 $= H(V, V_2)$ a sample of edges of stree $Z O(\frac{1}{2} \log 3)$
hits a (V_1, V_2) -violating edge with prob $Z I - (I - E)^{\frac{1}{2} \log 3}$
hits a (V_1, V_2) -violating edge with prob $Z I - (I - E)^{\frac{1}{2} \log 3}$
 $E I - e^{-C \cdot \log 3} = I - e^{-\log 3} = I - 8$
Great I?
Need to hit violating edge for every partition
how is this an algorithm?
No edge violation all partitions