

Adjacency Matrix model G represented by matrix A st. con guery A in one step $A = \begin{bmatrix} A_{ij} \end{bmatrix}$

Distance from property P:

$$\frac{def}{def} = \frac{1}{G} \frac{1}{is} \frac{1}{E} - \frac{1}{far} \frac{1}{From} P \quad if must change = \frac{1}{E} \cdot n^2$$
entries in A to turn G into member of P

Testing "sparse" properties :

	Graph type	max degree	natural	representation	notion of distance	
	r ji -	J				
Previously	Sparse					
5						
L f	1					
Now	dense					

Bipartiteness:

- Can color nodes red/blue s.t. no edge monochromatic Can purtition nodes into (V_1, V_2) st. Ę

$$e \in E \qquad s_{-1}^{4} \qquad u_{j} \vee \in V_{1}$$

$$(u_{j} \vee) \qquad or \qquad u_{j} \vee \in V_{2}$$

$$\frac{\mathcal{E}-far}{rom bipartite} : (definition)$$

$$\cdot must remove > \mathcal{E} \cdot n^2 edges to make bipartite$$

$$\circ \forall partitions \quad V=(V_1, V_2), \quad > \mathcal{E} \cdot n^2 \quad Violating edges$$

Testing Algorithms:

· Testing exact bipartiteness;

· Proposed testing algorithm:

. Pick sample of nodes of size $O(\frac{1}{\epsilon} \log \frac{1}{\epsilon})$

. Consider induced graph on sample

• If bipartite, output PASS else output FAIL

A first attempt at a proof?

is bipartite, so algorithm Pusses 6 bipartite, induced graph if

G E-far from bipartite: iſ

make it bipartite must remove En edges to

e quivalently;

Lets try to use the "partition" defin of bipartiteness:
Algorithm 0
Pick m=
$$\Theta(?)$$
 random edge slots & guery
H partitions (V_1, V_2) :
Violating $\leftarrow \pm$ violating edges in sample wit (V_1, V_2)
If $\forall (V_1, V_2)$ violating $\forall V_1, V_2$ else output FAIL
 $\forall V_1, V_2$ violating $\forall V_1, V_2$ else output PASS

tind representative partititions s.t.

Some representative.

.

Algorithm 1 Query Complexity: Sick U, U randomly from V $U = (\frac{1}{2}\log^{2} E)$ $P(\frac{1}{2}\log^{2} E)$ $P(\frac{1}{2}\log^{2}$ 1. pick U, U' randomly from V $\left(\frac{1}{\epsilon^2} \right) \left(\frac{1}{\epsilon} \right)$ 2. V partitions of U into U, U2. (Z, Z) Time Complexity: • (ount # {(u,v) e P st. Wohate (Z Z) } Why pass if see any violations? if fraction 5 3/4 E PASS that we would checking all partitions else continue to next partition Can imprive dependence on E 3.FAIL Behavior: need to show that if G bipartite, likely to pass tif G E-farfrom bipartite, likely to tail if G is E-far." <u>All</u> partitions Z₁, Z₂ have > E.n² violating edges (so all those generated <u>WZ122</u> Pr[fraction of violating edges in P is < 3/4 En²)<< $\frac{1}{9.2}$ [ul Pr[Phss] = Pr[any partition of U generates partition. that passes] < 2. Jul = 1/8

Comments Can improve vontime to poly (1/2) Proposed testing algorithm actually works In adjacency list model (sparse graphs) need Q (In) queries, Why more? Finar grain distinction dense model. Dipartile vs. E.n2 edges need to be removed Sparse model: bipattite VS. E.D.n edges needto be r