Lecture 7 (part II)
Testing dense graphs

- bipartiteness

Adjacency Matrix model
G represented by matrix A st can query A in
one step

$$
A=\left[\begin{array}{lll}
& A_{i j} \\
& &
\end{array}\right]
$$

Distance from property P :
def G is $\varepsilon \cdot f a r$ from P if must change $>\varepsilon \cdot n^{2}$ entries in A to torn G into member of P

Testing "sparse" properties:

Graph type max degree natural representation notion of distance
Previously sparse
Now dense

Bipartiteness:

- can color nodes red/blue sit. no edge monochromatic
- Can partition nodes into $\left(V_{1}, V_{2}\right)$ st.

$$
\begin{aligned}
& 7 \underset{\substack{\prime \prime \\
(u, v)}}{e \in E} \quad \stackrel{s+1}{ } \quad \text { or } u, v \in V_{1} \\
& u, v \in V_{2}
\end{aligned}
$$

E-far from bipartite: (definition)

- must remove $\supset \varepsilon \cdot n^{2}$ edges to make bipartite
- \forall partitions $V=\left(V_{1}, V_{2}\right)>\varepsilon \cdot n^{2}$ violating edges

Testing Algorithms:

- Testing exact bipartiteness:
- Proposed testing algorithm:
- Pick sample of nodes of sine $O\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\varepsilon}\right)$
- Consider induced graph on sample
- If bipartite, output PASS else output FAIL

A first attempt at a proof?
if G bipartite, induced graph is bipartite, so algorithm pusses
if $G \quad \varepsilon$-far from bipartite:
must remove \sum^{2} edges to make it bipartite equivalently:

Let's try to use the "partition" defn of bipartiteness:

Algorithm 0
Pick $m=\theta(?)$ random edyeslots \& query \forall partitions $\left(V_{1}, V_{2}\right)$:
violating $\left(_{\left.V_{1}, V_{2}\right)} \leftarrow \#\right.$ violating edges in sample ort $\left(V_{1}, V_{2}\right)$
If $\forall\left(V_{1}, V_{2}\right)$ violating ${\left(v v_{1}, 2\right)}^{\left.V_{2}\right)}$ then output FAIL

Wait! How small should of be?
Recall: All partititions are bad
But : if any partition "looks" good, the algonthm outputs PASS
Probability any partition "looks "good:
for one partition $\left(V_{1}, V_{2}\right)$,
for all partitions $\left(V_{1}, V_{2}\right)_{1}$

Do we really need a union bud?
Do we need to try all partitions?
(or can we find few "representative" partitions Can we find few representative all partition s?)
that are close to a

Plan: Consider small set of representatives

Useful R satisfies:
$\forall p \in P \quad \exists r \in R \quad$ st. $\quad \operatorname{dist}(p, r) \leq \varepsilon$

Hope: (1) testing R tells you something about P
(2) $|R| \ll|P|$
(so union bound lish't as bad)

Plan:
Find "representative" partititions st.
all partitions are $\frac{\varepsilon}{2}$-close to
Some representative.
-if G.for from bipartite then \forall partitions $\quad z \varepsilon^{2}$ violating edges 2

- if G bipartite then
\exists partition with 0 violating edges

Algorithm 1

1. pick $U_{U \prime} U^{\prime}$ randomly from V

$$
\underset{\substack{\text { nodes }}}{\theta\left(\frac{1}{\varepsilon} \log _{\frac{1}{2}}^{\prime \prime}\right)} \stackrel{*}{ } \stackrel{\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\varepsilon}\right)}{\text { nodes }}
$$

If u not bipartite, FAIL
2. \forall partitions of U into U_{1}, U_{2} :

- induce partition $\left(u_{1}, w_{1}, z_{2}, u_{2} \cup w_{2}\right)$ on whole graph:

Portion: $\forall v \in V$ (including $i \in U$)

- if v has $n b r$ in U_{2}, put in W_{1}

$$
\text { - if v"" " } u_{1} \text {,"" } W_{2}
$$

$$
\text { """ " } " \text { both } \Rightarrow \text { bad partition! } \begin{gathered}
\text { conturve }
\end{gathered}
$$

contrive to nexpartition

"" " " neither, put in W,

- (count $\#\left\{\left(u_{1}, v\right) \in P\right.$ st volute $\left.\left(z_{1}, z_{2}\right)\right\}$
if fraction $\leq 3 / 4 \varepsilon$ PASS that ${ }^{1}$

3. FAIL elbe continue to next partition

Alymithm 1

1. pick u, u^{\prime} randomly from V
note 5

\qquad pair of $u=\{u, v, u, v$ v es:
If u not bipartite, Foils
2. \forall portions of u into u_{1}, u_{2} :

Query Complexity:

$$
O\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\varepsilon}\right)
$$

Time Complexity:

$$
O\left(2^{\frac{1}{\varepsilon} \log ^{1 / \varepsilon}}\right) \ll_{\substack{\text { on } \\ n}}^{n_{0}}
$$

can improve dependence on ε

Behavior: need to show that if G bipartite, likely to pass of G efarfrom bipartite, INkely to Fail
if G is ε-far:
all partitions $Z_{1} Z_{2}$ have $>E \cdot n^{2}$ violating edges (so all those generated
$\forall z_{1,2} \operatorname{Pr}$ [fraction of violating edges in P is $\left.\leq 3 / 4 \operatorname{sn}^{2}\right] \ll \frac{1}{8 \cdot 2}|u| \quad$ by algorithm do too!)
$P_{r}[P A-s s]=\operatorname{Pr}[$ any partition of U generates partition. that passes $] \leq 2^{|u|} \cdot \frac{1}{8 \cdot 2^{|u|}}=\frac{1}{8}$

Algorithm 1

1. pick u, u^{\prime} randomly from V
notes es nodes vied to define rathe elias:
Used to

$$
\begin{aligned}
& \text { parr off } u^{\prime}=\left\{u_{1}, v_{1}, w_{1}, v_{2}, \ldots\right\} \\
& \text { to } p=\left\{\left(u_{1}, v_{1},\left(u_{2}, v_{2}\right), \ldots\right\}\right. \text { pairs }
\end{aligned}
$$

If u not bipartite, Fink
2. \forall portions of u into u_{1}, u_{2} : parton envoy $^{\text {h }}$?

if G is bipartite:
does it pass?
Let $\left(Y_{1}, Y_{2}\right)$ be bipartite partition.

$$
\# \text { violatingedyes }=0
$$

For sample U, partition according to $Y_{1,}, V_{2}$

$$
\begin{aligned}
& U_{1} \leftarrow U \cap Y_{1} \\
& U_{2} \leftarrow U \cap Y_{2}
\end{aligned} \quad \text { \}partition of } U
$$

Comments
Can improve runtime to poly $(1 / \varepsilon)$
Proposed testing algorithm actually works
In adjacency list model (sparse graphs) need
$\Omega(\sqrt{n})$ queries,
Why more?
finer grain distinction
densemodel: bipartite vS. $\varepsilon \cdot n^{2}$ edges need to be removed
Sparse model: bipartite VS. E.S.n edges need to

