Lecture 8
Testing dense graphs

- bipartiteness

Adjacency Matrix model
G represented by matrix A st can query A in one step

$$
\begin{array}{r}
A=\left[\begin{array}{l}
A_{i j} \\
\AA \\
\\
1 \text { if }(i, j) \in E \\
0 . \omega .
\end{array}\right.
\end{array}
$$

Distance from property P :
def G is $\varepsilon \cdot f a r$ from P if must change $>\varepsilon \cdot n^{2}$ entries in A to turn G into member of P

Testing "sparse" properties:
all graphs are ε-close to connected in this model \Rightarrow trivial tester outputs "PAss" who looking at graph

| | Graph type | max degree | natural representation notion of distance |
| :---: | :---: | :---: | :---: | :---: |

Should be easier to detect

Bipartiteness:
T. can color nodes red/blve st. no edge monochromatic
\rightarrow - Can partition nodes into $\left(V_{1}, V_{2}\right)$ st. equivalent

$$
\underset{\substack{u \prime \\(u, v)}}{\underset{\sim}{e} \in E} \quad \text { s! } \quad \text { or } u, v \in V_{1} u \text { "violating edges" }
$$

not bipartite $\Rightarrow \forall\left(V_{1}, V_{2}\right) \exists$ "violating edge"

E-far from bipartite: (definition)

- must remove $\supset \varepsilon \cdot n^{2}$ edges to make bipartite
- \forall partitions $V=\left(V_{1}, V_{2}\right)$, $>\varepsilon \cdot n^{2}$ violating edges
equivalent

Testing Algorithms:

- Testing exact bipartituness:
eng. BFS
- Proposed testing algorithm:

- Pick sample of nodes of sine $O\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\varepsilon}\right)$
- Consider induced graph on sample \longleftarrow ignore nodes not insamble ignore edge st.,
- If bipartite, output PASS $\geqslant 1$ eadpt is else output FAIL not in sample

A first attempt at a proof?
if G bipartite, induced graph is bipartite, so algorithm passes if $G \quad \varepsilon$-far from bipartite:
must remove $\sum n^{2}$ edges to make it bipartite equivalently:
\forall partition V_{1}, V_{2} have $>\varepsilon n^{2}$ violating edges $(>\varepsilon$ fraction of slots in adjmatrix)
$\Rightarrow f\left(V_{1} V_{2}\right)$ a sample of edges of sire $\geq \theta\left(\frac{1}{\varepsilon} \log \frac{1}{8}\right)$
hits a $\left(V_{1}, V_{2}\right)$-violating edge with prob $\geq 1-(1-\varepsilon)^{\frac{c}{\varepsilon} \log \frac{1}{8}}$
Great!?

$$
\geq 1-e^{-c \cdot \log \frac{1}{\delta}}=1-e^{-\log 1 / \delta}=1-\delta
$$

need to hit violating edge for every partition how is this an algorithm?
no edge violates all partitions

Let's try to use the "partition" defn of bipartiteness:

Algorithm 0
Pick $m=\theta(?)$ random edyeslots \& query \forall partitions $\left(V_{1}, V_{2}\right)$:
violating $\left(_{\left.V_{1}, V_{2}\right)} \leftarrow \#\right.$ violating edges in sample ort $\left(V_{1}, V_{2}\right)$
If $\forall\left(V_{1}, V_{2}\right)$ violating ${\left(v v_{1}, 2\right)}^{\left.V_{2}\right)}$ then output FAIL

Wait! How small should δ be?
Recall: All partititions are bad
But: if any partition "looks" good, the algonthm outputs PAss
Probability any partition "looks" good:
for one partition $\left(X_{1}, V_{2}\right), \operatorname{Pr}\left[\left(V_{1}, V_{2}\right)\right.$ looks good $] \leq \delta$
for all partitions $\left(V_{1}, V_{2}\right), \operatorname{Pr}\left[\right.$ any $\left(v_{1}, v_{2}\right)$ looks good $] \leq \underbrace{2^{n} \cdot \delta}_{\text {Union bond }}$

$$
\therefore \text { need } \delta \ll \frac{1}{2^{n}}
$$ over 2^{n}

would imply ${ }_{\uparrow}^{m=\theta\left(\frac{1}{\varepsilon} \log \frac{1}{8}\right)}=\theta\left(\frac{1}{\varepsilon} \log \frac{1}{\frac{1}{2^{n}}}\right)=\theta\left(\frac{n}{\varepsilon}\right)$ porrtitus
sample complexity is m^{2} so $\theta\left(\frac{n^{2}}{\varepsilon^{2}}\right)$ nat sublimer
Do we really need a union bud?
Do we need to try all partitions?
(orcan we find few "representative" partitions that are close to all partitions?)

Plan: Consider small set of representatives

$$
|P|=2^{n}
$$

$R \equiv$
purple points
are "representatives"

- $R \leq P$
- every member of P is "close" to some member of R

Useful R satisfies:

- $\forall p \in P \quad \exists r \in R \quad$ st. $\quad \operatorname{dist}(p, r) \leq \varepsilon$
- $|R|$ is small (hopefully $|R| \ll|P|$) (1) if paP that is a biparatitom pf Then $\exists r \in R$ sat + has fou (2) if $\forall P \in P$, violations for fem bisection then since $R \leq \rho$, all rare for to

Pan:
Find "representative" partititions st.
all partitions in P are $\frac{\varepsilon}{2}$-close to
Some representative.
-if G for from bipartite then
\forall partitions $\quad 2 \varepsilon^{2}$ violating edges
$\Rightarrow \forall$ representation partitions, have $>\varepsilon n^{2}$ violating edges since $R \leq P$

- if G bipartite then
\exists partition with 0 violating edges
\Rightarrow so $\quad \exists$ representative parton with $<0+\frac{\varepsilon}{2} n^{2}$ violating elders $=\frac{\varepsilon}{2} n^{2}$

Algorithm 1

1. pick $U_{\|}, U^{\prime}$ randomly from V

$$
\theta\left(\frac{1}{\varepsilon} \log _{\left.\frac{1}{\varepsilon}\right)}^{\prime \prime} *\left(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)\right.
$$

nodes
used to define
"N". the set of partitions
used to test partitions!

$$
\begin{aligned}
& u^{\prime}=\left\{u_{1} v_{1}, u_{2} v_{2} \ldots\right\} \\
& P=\left\{\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right)\right)^{\prime} \ldots \text { pairs }
\end{aligned}
$$

If u not bipartite, FAIL $\leftarrow O\left(|u|^{2}\right)$ queries
2. \forall partitions of U into U_{1}, U_{2} : (only consider those thant are bipartions of U)

2 of these. define oracle (see below) which partitions graph into Z_{1}, z_{2} based on U_{1}, u_{2}

- $\forall u \in U^{\prime}$ call oracle to see if
u in Z_{1} or Z_{2}
- Count $\#\left\{(u, r) \in P\right.$ that violate $\left.2_{1}, z_{2}\right\}$
if fraction $\leq 3 / 4$ \& output PASS + halt \Leftarrow why pass if >0 violations? else continue to next partition since we dor it check all partitions

Given partition of U into. U_{1}, U_{2}, define ORACLE to partition whole graph:

Query: node v
Oracle answer: Z_{1} or Z_{2} or "bad partition" Oracle algorithm:
output $z_{1} u_{1}$ if
$v \in u_{1}$
v has nair in u_{2} but not in u_{1}

v has no nor in either U_{1} or U_{2} ??

$$
\begin{aligned}
& z_{1}=u_{1} v w_{1} \\
& z_{2}=u_{2} v w_{2}
\end{aligned}
$$

else output Z_{2} if

$$
v \in u_{2}
$$

v hus nor in U_{1} but not U_{2}
else output "bad partition" truly reach if have nor
Runtime: $O(|u|)$ per query to $U_{1} \pm U_{2}$

Alymithm 1

1. pick u_{1}, u^{\prime} randomly from V

$$
\begin{aligned}
& \theta\left(\frac{1}{2} \log \frac{1}{2}\right) \geqslant \theta\left(\frac{1}{2} \ln \log _{2} \frac{2}{2}\right) \\
& \begin{array}{c}
\text { notes } \\
\text { used to to nodes } \\
\text { ven }
\end{array} \\
& \text { vested to } \\
& \text { define potations }
\end{aligned}
$$

If u not bipartite, Forte
2. \forall portions of u into U_{1}, u_{2} :

3. FAIL

Query Complexity:

$$
\frac{1}{\varepsilon} \log \frac{1}{\varepsilon} \cdot \frac{1}{\varepsilon^{2}} \log \frac{1}{\varepsilon}=\left(\frac{1}{\varepsilon^{3}} \log ^{2} \frac{1}{\varepsilon}\right)
$$

Time Complexity:

$$
O\left(2^{\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}} x_{x=0}\right)
$$

no dependence on n con improve dependence on ε

Behavior: need to show that if G bipartite, likely to pass rif G efarfrom bipartite, lIkely to Fail
if G is ε-far:
all partitions Z_{1}, z_{2}, including those tested by algorithm, have $>\varepsilon n^{2}$ violating edges $\forall z_{1}, z_{2} \quad \operatorname{Pr}\left[\right.$ fraction of violating edges in P is $\left.\leq \frac{3}{4} \varepsilon n^{2}\right]<\frac{1}{8 \cdot 2}\left|u^{n}\right|$ (Hernoff bund)

$$
\operatorname{Pr}\left[P_{A S s}\right]=\operatorname{Pr}\left[\text { any } \quad z_{1,} 2_{2} \text { passes }\right] \leqslant 2^{|u|} \cdot \frac{1}{8 \cdot 2} 2^{\prime \prime} \ll \frac{1}{8}
$$

Algorithm 1

1. pick u_{1}, u^{\prime} randomly from V
notes sones vied to define rubin elgon
red to
define set of pair off $u^{\prime}=\left\{u_{1}, v_{1}, u_{n}, v_{3}, \ldots \xi\right\}$

If u not biparty, Fall
2. \forall portions of U into U_{1}, u_{2} :

- $\forall u \in U^{\prime}$ call oracle to see if
u in z_{1} or z_{2}
- Count $\#\left\{(u, v) \in p\right.$ that violate $\left.z_{1}, z_{2}\right\}$
if fraction $\leqslant 3 / 4 \cdot \varepsilon$ output PASS o halt
else continue to next partition

3. FAIL
if G is bipartite:
does it pass?
Let $\underline{\left(Y_{1}, Y_{2}\right)}$ be bipartite partition.

$$
\# \text { violatingedyes }=0
$$

For sample U, partition according to $Y_{1, V_{2}} Y_{2}$

$$
\left.U_{1} \leftarrow U \cap Y_{1}\right\} \text { partition of } U
$$

$U_{2} \leftarrow U \cap Y_{2} \quad$ according to $\left(Y_{1}, Y_{2}\right)$

Use $\left(U_{1}, V_{2}\right)$ to $\underbrace{\text { partition } V}_{\text {thrust process }}$ into $W_{1}^{u_{1}^{u} u_{2}} W_{2}^{u_{1} u_{2}}$
Question: how similar is $\left(Y, Y_{1}\right)$ to $\left(W_{1}, w_{1}, w_{2}, W_{2}^{u_{1} u_{2}}\right)$?
how many extra
get from oracle on $U_{1} U_{2}$ viokaty edges?

Given partition of U into. U_{1}, U_{2}, define ORACLE to partition whole graph:

Query: node v
Oracle answer: Z_{1} or Z_{2} or "bad partition" Oracle algorithm:
output 2_{1} if

else output Z_{2} if

$$
v \in u_{2}
$$

v has nor in U_{1} but not U_{2}
else output "bad partition"
Runtime: O(|u|) per query
\forall partitions of U into U_{1}, U_{2} :

- induce patition $\left.\left(u_{1}, w_{1}, z_{1}, u_{2}\right) u w_{2}\right)$ on wholegraph:

Let $\left(Y, Y_{2}\right)$ be bipartive pactition.
$\#$ violatingechues $=0$
For sumple U, pertition acoarding wh Y, V_{E}

$$
\begin{aligned}
& u_{1} \leftarrow u \wedge_{1} \\
& u_{2} \leftarrow u \Lambda_{2} \\
& \text { Use } u_{1}, u_{2} \text { to parthm } V: W_{1}^{u_{1} u_{2}}, w_{2}^{u_{2}}
\end{aligned}
$$

\# voluting edyes in $\left(w_{1}^{u_{1} u_{2}}, w_{2}^{u_{1} u_{2}}\right)$:
 $\operatorname{in}\left(Y_{1}, 1_{2}\right)$

$$
A=\left\{v \delta t . \quad \operatorname{dej} v<\frac{\varepsilon}{4} n\right\} \text { "smull degrae" }
$$

$$
B=V \backslash A
$$

"high degree"
Aneed to ford a good boord
recall: U is random sample, $\quad|U|=\theta\left(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)$

$$
B_{u}=\left\{v \text { st. } \operatorname{deg}(v) \geq \frac{\varepsilon}{4} n+v \text { his no nor in } U\right\}
$$

$\underline{\operatorname{Lemma}} \operatorname{Pr}_{u}\left[|B| \leq \frac{\varepsilon}{4} n\right] \geq 7 / 8$
Pf

$$
\begin{aligned}
& \forall v \text { of } d_{e g} \geq \frac{\pi}{4} n \quad \text { set } \quad G_{v} \leftarrow \begin{cases}1 & \text { if } v \in B \\
0 & 0 . w .\end{cases} \\
& E_{u}\left[\sigma_{v}\right]=\operatorname{Pr}\left[\sigma_{u}=1\right]=\left(\operatorname{Pr}\left[t^{\text {th }} \text { node of } u \text { int } \text { nor } \alpha v\right]\right)^{|u|} \\
& \begin{array}{l}
\leq\left(1-\frac{\varepsilon}{4}\right)^{|u|} \leq\left(1-\frac{\varepsilon}{4}\right)^{\frac{4}{2} \cdot \log 3 / \varepsilon} \leq \frac{\varepsilon}{32} \quad \leftarrow \quad \text { by picking right constuits } \\
\quad \leq \frac{\varepsilon n}{32} \text { so } \operatorname{Pr}\left[\left|B_{u}\right|=\sum \sigma_{v} \geq \frac{8 \varepsilon n}{32}\right] \leq \frac{1}{8} \text { by Markov } \neq \frac{4}{\varepsilon} \log 2 / \varepsilon
\end{array} \\
& \begin{array}{l}
E\left[\begin{array}{l}
\left.\sum \sigma_{v}\right] \\
v \text { st. } \\
\text { dey } v \geq \frac{\delta_{3}}{4} n
\end{array} \leq \frac{\varepsilon n}{32} \text { so } \operatorname{Pr}\left[\left|B_{u}\right|=\sum \sigma_{v} \geq \frac{8 \varepsilon n}{32}\right] \leq \frac{1}{8} \text { by } \operatorname{Markos} \neq \frac{r^{2}}{\varepsilon} \log 32 / \varepsilon\right. \\
\varepsilon n / 4
\end{array}
\end{aligned}
$$

\forall portions of U into U_{1}, U_{2} :
Let $\left(Y_{1}, Y_{2}\right)$ be bipartite partition.

- induce partition $\left(u_{1}, w_{1}, u_{1} u_{2} \cup w_{2}\right)$ on whole graph:

$\#$ violatingedyes $=0$
For sample U, partition according br Y, V_{E}

$$
\begin{aligned}
& u_{1} \leftarrow u \wedge_{1} \\
& u_{2} \leftarrow u Y_{2} \\
& \text { Use } u_{1}, u_{2} \text { to parthia } V: W_{1}^{u_{1} u_{2}}, w_{2}^{u_{2}}
\end{aligned}
$$

\# violating edges in $(W_{1}^{u_{1} u_{2}}, W_{2}^{\left.u_{1} u_{2}\right) \text { : } \underbrace{\text { \#etyes that can differ }\left(Y_{1}, Y_{2}\right)+\left(W_{1}^{u_{1} u_{2}}, W_{2}^{u_{1}, u_{2}}\right)} \text { between }}$
$\leq \underbrace{0}_{\# \text { violating edges }}+$ in $\left(Y_{1}, Y_{2}\right)<\underbrace{\operatorname{adjacent}}_{\text {divide into two cases! }}$ to any v with no n br in U
\#r violating edges in $\left(\begin{array}{l}\left.1, Y_{2}\right) \\ \left.V_{2}\right)\end{array} \quad A=\left\{v\right.\right.$ sit. $\left.\operatorname{deg}(v)<\frac{\varepsilon}{4} n\right\}$ "small

$$
\leq \frac{\Sigma \cdot n}{4} \cdot n+n \cdot \frac{\varepsilon n}{4} \leq \frac{\varepsilon n^{2}}{2}
$$

$$
\beta=\left\{v \quad s!\quad \operatorname{deg}(v) \geq \frac{\varepsilon}{4} n\right\} \begin{gathered}
\text { "high } \\
\text { degree" }
\end{gathered}
$$

$\Rightarrow E\left[\right.$ fraction of $\left(u_{1},\right) \in P$ violating $\left.W_{1}^{a_{1} u_{2}} W_{2}^{u_{1} u_{2}}\right] \leq \frac{\varepsilon}{2}$
So $\operatorname{Pr}\left[\right.$ " '"' $\left.^{\prime \prime} \quad{ }^{\prime \prime} \geq \frac{3 \varepsilon}{4}\right]<\frac{y}{8} \quad$ by Chernoff.
(recall: U is random sample, $|U|=\theta\left(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)$

$$
\begin{gathered}
\Rightarrow \operatorname{Pr}[\text { output fail } \mid] B_{u}=\left\{v \text { st. } \operatorname{deg}(v) \geq \frac{\varepsilon}{4} n+v \text { is no nor in } U\right\} \\
=\operatorname{Pr}\left[\text { output fail }| | B_{n} \left\lvert\,>\frac{\varepsilon}{4} n\right.\right] \cdot \operatorname{Pr}\left[\left|B_{u}\right|>\left(\left.\frac{\xi}{4} \right\rvert\, n\right]\right. \\
\leq 1 \\
\leq 1 / 8
\end{gathered}
$$

$+\operatorname{Pr}\left[\right.$ output farl $\left.\left|B_{n}\right| \leq \frac{\varepsilon}{4} n\right] \cdot \operatorname{Pr}\left[\left|B_{n}\right| \leq(\varepsilon / 4)^{n}\right]$

$$
\leq 1 / 8 \quad \leq 1
$$

$$
\leq \frac{1}{8}+\frac{1}{8}=\frac{1}{4}
$$

Comments
Can improve runtime to poly $(1 / \varepsilon)$
Proposed testing algorithm actually works
In adjacency list model (sparse graphs) need
$\Omega(\sqrt{n})$ queries,
Why more?
finer grain distinction
densemodel: bipartite vS. $\varepsilon \cdot n^{2}$ edges need to be removed
Sparse model: bipartite VS. E.S.n edges need to

Other problems: Partition Properties
erg. Max cut
can we partition into $k \approx$ equal sized groups $1 \ldots k$ sit. fraction of edges between groups itij $\approx a_{i j}$ problem

Similar oracle-based algorithms:
Maxcut: prick randers sample S
\forall partitions of S into $\left(S_{1}, S_{2}\right)$, create oracle: if $v \in M S$ has more edges to S_{2} them S_{1} $\begin{array}{lll} & \text { put in } & W_{1} \\ \text { else } & \text { " } & W_{2}\end{array}$
then estimate \#edges between $\left(W_{1} \cup S_{1}\right)+\left(W_{2} \cup S_{2}\right)$
Output max value

