Lecture 9
Szemerédi's Regularity Lemma
Testing dense graph properties via SRL:
Δ-freeness

Graphs with "random" properties:

Example question:
How many triangles in a random tripartite graph?

density η

$$
\begin{aligned}
& \forall u \in A, v \in B, w \in C \text { : } \\
& \operatorname{Pr}[u \sim v \sim w]=\eta^{3} \quad \sigma_{u, v, w}= \begin{cases}1 & \text { if } u \sim v \sim w \\
0 & 0, w .\end{cases} \\
& E\left[\sigma_{u, v, w}\right]=\eta^{3} \\
& E[\pm \text { triangles }]=E\left[\sum_{\substack{n \in A \\
v \in B \\
w \in C}} b_{n, v}\right]=\eta^{3} \cdot|A| \cdot|B| \cdot|c|
\end{aligned}
$$

Can we make weaker assumptions a still get reasonable bounds?

Density \& Regularity of set parrs:
def. For $A, B \leq V$ st.
(1) $A \cap B=\varphi$
(2) $|A|,|B|>1$

Let $e(A, B)=\#$ edges between $A+B$

+ density $d(A, B)=\frac{e(A, B \mid}{|A| \cdot B \mid}$
Say A, B is γ-regular if $\forall A^{\prime} \leq A, B^{\prime} \leq B$

st.

$$
\begin{aligned}
& \text { st. } \quad\left|A^{\prime}\right| \geq \gamma|A| \\
& \left|B^{\prime}\right| \geq \gamma|B| \\
& \left|d\left(A^{\prime}, B^{\prime}\right)-d(A, B)\right|<\gamma
\end{aligned}
$$

$$
\begin{aligned}
& \text { behest } \\
& \text { "like } \\
& \text { "a } \\
& \text { random } \\
& \text { graph" }
\end{aligned}
$$

$\xrightarrow{\text { Lemma }}$ density

$$
\forall \eta>0
$$

$$
\begin{aligned}
& \text { regularity parameter, } M \\
& \text { depends only on } \\
& \exists \gamma \quad=\frac{1}{2} M=\gamma^{\triangleright}(\eta)
\end{aligned}
$$

$$
\delta=(1-\eta) \frac{n^{3}}{8} \geqslant \frac{n^{3}}{16} \equiv \delta^{8}(\eta)
$$

$\begin{array}{cc}\uparrow & \uparrow_{\text {if }}^{16} 1 / 2 \\ \text { triangles, }\end{array}$
depends only on M

$$
d(A, B)=\frac{e(A, B)}{|A| \cdot|B|}
$$

$A B$ is γ-regular if $\forall A^{\prime} \leq A, B^{\prime} \leq B$
st. $\left|A^{\prime}\right| \geq \gamma|A|$
$\left|B^{\prime}\right| \geq \gamma|B|$
$\left|d\left(A^{\prime}, B^{\prime}\right)-d(A, B)\right|<\gamma$
if A, B, C disjoint subsets of V st. each pair is γ - regular with density $>\eta$
then G contains $\geq \delta \cdot|A| \cdot|B| \cdot|C|$ distinct $\Delta^{\prime} S$

Proof:

$$
\begin{aligned}
A^{*} \leftarrow \text { nodes in } A \text { with } & \geq|\eta-\gamma| \cdot|B| \text { nbs in } B \\
& \geq|\eta-\gamma| \cdot|C| \text { nbs in } C
\end{aligned}
$$

$C \underline{\operatorname{laim}}\left|A^{*}\right| \geq(1-2 \gamma)|A|$
Why? (Pf of claim)
$A^{\prime} \in$ "bad" nodes wit. $B \quad(\angle|\eta-\gamma| \cdot|B|$ nous in $B)$

$$
A^{\prime \prime} \leftarrow
$$

then $\left|A^{\prime}\right| \leq \gamma|A| \quad\left(+\left|A^{\prime \prime}\right| \leq \gamma|A|\right)$
why? consider pair A^{\prime}, B. def of A^{\prime}

$$
d\left(A^{\prime}, B\right)<\frac{\left|A^{\prime}\right| \cdot|\eta-\gamma| \cdot|B|}{\left|A^{\prime}\right| \cdot|B|}=\eta-\gamma
$$

but $d(A, B)>\eta$.
so $\left|d\left(A^{\prime}, B\right)-d(A, B)\right|>\gamma+|B| \geq \gamma|B|$
So if $\left|A^{\prime}\right| \geq \gamma|A|$ then (A, B) is not $\underset{\rightarrow c}{\gamma-r e g u l a r ~}$

Let $A^{*}=A \backslash\left(A^{\prime} \cup A^{\prime \prime}\right)$ then $\left|A^{*}\right| \geq|A|-\left|A^{\prime}\right|-\left|A^{\prime \prime}\right| \geq|A|-2 \gamma| | A|=(1-2 \gamma) \cdot| A \mid$
if A, B, C disjoint subsets of V st. each pair
is γ-regular with density $>\eta$
then G contains $\geq \delta \cdot|A| \cdot|B| \cdot|C|$ distinct $\Delta ' s$
Proof:

$$
\begin{aligned}
A^{*} \leftarrow \text { nodes in } A \text { with } & \geq|\eta-\gamma| \cdot|B| \text { nbrs in } B \\
& \geq|\eta-\gamma| \cdot|C| \text { nbrs in } C
\end{aligned}
$$

$C \underline{\operatorname{laim}}\left|A^{*}\right| \geq(1-2 \gamma)|A|$
For each $u \in A^{*}$: define B_{u} 三nbrs of u in $B y$ piety $C_{u} \equiv$ nbs of u in C^{C} by def of A^{*}

Since $\gamma<\eta,\left|B_{u}\right| \geq(\eta-\gamma)|B| \geq \gamma|B|$

$$
(\eta-\gamma>\gamma)^{2} \quad\left|c_{u}\right| \geq(\eta-\gamma)|c| \geq \gamma|c|
$$

\#edges between $B_{a}+C_{4} \Rightarrow$ lower bod on \# distinct Δ 's in which a participates

$$
\begin{aligned}
d(B, C) \geq \eta \Rightarrow & d\left(B_{u}, C_{u}\right) \geq \eta-\gamma \Rightarrow e\left(B_{u}, C_{u}\right) \geq(\eta-\gamma)\left|B_{u} \| C_{u}\right| \geq(\eta-\gamma)^{3} \cdot|B| \cdot|C| \\
& +B_{u}, C_{u} \text { big enough }+\left(B_{1},\right) \text { is } \gamma \text { regular }
\end{aligned}
$$

so fora| $\# \Delta^{\prime} s \geq(1-2 \gamma)|A| \cdot(\eta-\gamma)^{3}|B||C| \geq(1-\eta)(\eta \mid 2)^{3}|A||B||C|$ choose $\rangle \geq\left.\eta\right|_{2}$

Do interesting graphs have regularity properties?
Yes in some sense, all graphs do "can be approximated as small collection of random graphs"
Szemerédis Regularity Lemma
would like it to say:
"one can equipartition nodes of V into $V_{1 . . .} V_{k}$ (for cons k) s.t.

Sometruse need $k>m$ for some m ($k=1, k=n$ trivia)

Szemerédi's Regularity Lemma: (especially useful version)

$$
\forall m, \varepsilon>0 \quad \exists \quad T=T(m, \varepsilon) \quad \text { s.t. } \quad \text { given } \quad G=(V, E) \quad \text { sit. }|V|>T
$$

- A an equipartition of V into sets
then exists equipartition B into k sets which refines A st. $\quad m \leq k \leq T$
$+\quad \leq \varepsilon\binom{k}{2}$ set pairs not ε-regular
cons \# partitions st.
\downarrow each pair behaves like $\underbrace{\text { random graph }}$
Note: T does not depend on |V|

Why was SRL first studied?
to prove conjecture of Erdös + Turán: Sequences of int have long arithmetic progressions

Very rough idea of proof:
Same densities

$$
\begin{aligned}
& \text { "expectation } \\
& \text { of } d^{2}\left(v_{i}, j, j\right) \rightarrow \text { ind }\left(V_{1} \ldots V_{k}\right)=\frac{1}{k^{2}} \sum_{i=1}^{k} \sum_{j=i+1}^{k} d^{2}\left(v_{j}, v_{j}\right) \leq \frac{1}{2} \quad \text { "Variance of } d \text { " }
\end{aligned}
$$

 so in less then $\frac{1}{\varepsilon^{c}}$ refinements, havegood partition
How big is k ? v.b. Tower of sine $\frac{1}{\varepsilon^{c}}$
issue:: what it
Sp lt v_{i} for mana v_{j} ?
\Rightarrow split into exponemitid subsets

