6.889 Sublinear Time Algorithms September 1, 2020

Lecture 1
Lecturer: Romnitt Rubinfeld Scribe: Mehtaab Sawhney

1 Outline

The following topics were addressed during the first lecture.
e Overview of the Course/Sublinear Algorithms
e Diameter of a Point Set
e Number of Connected Components in a Graph

We refer the reader to the slides on the course homepage for the first item.

2 Diameter of a Point Set

Our first example of a sublinear algorithm (due to Piotr Indyk) will be computing a 2-approximation to
the diameter of a point set in sublinear time. This algorithm has the unique property of being the only
deterministic algorithm in this class.

Input - We are given m points described by a distance matrix D such that D; ; is the distance from
i to j. Furthermore we are guaranteed that the distances satisfy

e (Symmetry) D; ; = D;, for all i, j € [m]
e (Triangle Inequality) D; ; < D, + Dg,; for all 4, j, k € [m)]

Note here that the input size is n = ©(m?) as we are given all pairs of distances.

Output - Let the diameter D = max; ;D; ;. Our output is a pair (k,¢) such that Dy, > D/2 (e.g.
a 2-approximation to the diameter)

Algorithm - Choose an arbitrary index k. Output (k,¢) such that Dy, is maximized. (The psue-
docode for the algorithm is given below.)

Algorithm 1: Diameter-Estimator

1 Pick k arbitrarily from {1,--- ,m} ;
2 ¢ = argmax; Dy j;
3 Return £, ¢, Dy ¢

Running Time - Note that we read only O(m) = O(y/n) entries of the distance matrix D.
Correctness - Let D = D; ;. Now note that

Dij <Dik+ Dy, [Triangle Inequality]
< Dg,i + Dy [Symmetry]
<Dy + Dy [Definition of /]
= Dps.

The desired result follows immediately.
Lower Bound - We now sketch an argument that any (2—0) approximation to the diameter requires
reading the entire matrix D. (This answers a question raised by one of the students in class.)

e Define the distance matrix M to have M;; = 0 and M, ; = 1 otherwise.



e Define the distance matrix A/ to be identical to M except N} = N7 = (2 - §).

e It can easily be checked that M, N7 satisfy the triangle inequality and symmetry. Furthermore,
even if one is given the promise that the distance matrix D is one of the (ZL) + 1 examples given it
takes take ©(m?) time to tell if any of the entries is larger than 1 giving the desired lower bound

as NI has diameter 2 — § while M has diameter 1.

3 Number of Connected Components in a Graph

Our second example of a (randomized) sublinear time algorithm that will be an en-approximation the
the diameter of an input graph G in time poly(1/e).

Input - We are given G = (V, E) in an adjacency list representation. As is standard, we will let
n=|V|and m = |E|.

Output - Let C' denote the number of connected components. We will output C such |C — c | <en
with probability 3/4.

The first key insight we will need is an alternate characterization of the number of connected com-
ponents of a graph G.

Lemma 1 Fiz a graph G = (V,E). For a vertex v € V, let n, denote the number of vertices in the
connected component of v and let C be the total number of connected components. Then we have that

1
C= —.

Proof By splitting G into connected components, it suffices to prove the claim for a graph G which
is connected. However, in this case, note that n, = |V| and therefore
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as desired. W

One naive attempt given this characterization is to simply sample small number of vertices v at
random from the graph G, compute n, for each sampled vertex, and output n the average of 1/n, over
the vertices sampled. However, there is a large issue in that computing n, already is already takes linear
time! The second insight therefore is to realize that if n, is large, 1/n, is small and therefore we do not
need to compute n, as precisely.

Lemma 2 Let
7y, = min(n,, 2/¢).
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We have that

en
<
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and that for a given vertex v, n, can be computed in O(1/2) time.

Proof We first prove that
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the first claim then follows by noting that by triangle inequality
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To prove that
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we split into cases based on the size of n,,.

o If n, < 2, we are done immediately as n, = 7.
1>

o If n, > %, note that ni <L andmn, = % and therefore

1 1 1 1 1
— == ==-—< ==~
Ny Ny Ty Ny Ny

Now in order to compute the 72, in ©(1/¢?) time we simply run BFS starting at the vertex v and output
the number of vertices in the corresponding component, short-cutting if we ever have processed more
than 2/e vertices. Note that if the connected component of v is less than 2/e vertices we will read the
entire component in O(1/e?)-time and thus we are able to compute n,, and thus 72, exactly. Otherwise
we have n, > 2 and the BFS will short-circuit after reading 2/e vertices and we will compute (correctly)

2

that n, = <. For the running time in this case note that we only process 2/e-vertices and for each vertex

we only process at most 2/e vertices in total (as otherwise we can short-circuit). ll

Given the above we are now in position to state our algorithm.
Algorithm - Choose s = ©(1/e?) vertices v1, ..., vs uniformly at random from the the vertices of
G. Compute 7, for i € [s] and return
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(The psuedocode for the algorithm is given below.)

Algorithm 2: Connected Components-Estimator

1 sum < 0;

2 forl1 <i<sdo

3 Sample v; uniformly from V;
4 L sum <— sum + 1/7,,;

5 C % (sum) return C

Running Time - The running time is dominated by computing 7, for sampled vertices n,,,. There
are ©(1/e?) vertices and each run takes ©(1/e2)-times giving a total running time of ©(1/e%).
Correctness - In order to prove correctness it essentially suffices by Lemma 2 to prove that
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the key tool here will be Chernoff bounds.

Theorem 3 (Chernoff Bounds) Fizd € [0,1]. Let X; be iid random variables in [0, 1] with p = E[X].
Let X =>"'_, X; and p =E[X] =rp. Then

P[|X — p| > 6] = P[|X — rp| > 6rp] < exp(—O(6°rp)).



Theorem 4 Let C be the number of connected components of G. The output of Algorithm 2, 5, satisfies

that )
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Note by definition that
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and therefore the desired claim is equivalent to

o (Z )l =5
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This is equivalent to the expression
1 ] 1 €s 1 1 €s 1
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Note that we have simply applied linearity of expectation at this stage. This is precisely the setup for
Chernoff-bounds and now it is simply a matter of picking parameters appropriately.
£ and thus p > g Now

First note that expected summand is at least /2 as we always have 1/n, > §

choosing § = i <1 we find that

(Zm)=l(Z=)=%
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} < exp(~O(8sp)) = exp(~O(e%s/(4p))) < exp(—O(&%s)).

Note in the final step we have used that p < 1 which follows as 1/n, € [0,1]. Thus taking s a sufficiently

large multiple of ©(1/£?) the result follows. B



