Lecture 1

Lecturer: Ronitt Rubinfeld Scribe: Mehtaab Sawhney

1 Outline

The following topics were addressed during the first lecture.

- Overview of the Course/Sublinear Algorithms
- Diameter of a Point Set
- Number of Connected Components in a Graph

We refer the reader to the slides on the course homepage for the first item.

2 Diameter of a Point Set

Our first example of a sublinear algorithm (due to Piotr Indyk) will be computing a 2-approximation to the diameter of a point set in sublinear time. This algorithm has the unique property of being the only deterministic algorithm in this class.

Input - We are given m points described by a distance matrix \mathcal{D} such that $\mathcal{D}_{i, j}$ is the distance from i to j. Furthermore we are guaranteed that the distances satisfy

- (Symmetry) $\mathcal{D}_{i, j}=\mathcal{D}_{j, i}$ for all $i, j \in[m]$
- (Triangle Inequality) $\mathcal{D}_{i, j} \leq \mathcal{D}_{i, k}+\mathcal{D}_{k, j}$ for all $i, j, k \in[m]$

Note here that the input size is $n=\Theta\left(m^{2}\right)$ as we are given all pairs of distances.
Output - Let the diameter $D=\max _{i, j} \mathcal{D}_{i, j}$. Our output is a pair (k, ℓ) such that $\mathcal{D}_{k, \ell} \geq D / 2$ (e.g. a 2-approximation to the diameter)

Algorithm - Choose an arbitrary index k. Output (k, ℓ) such that $D_{k, \ell}$ is maximized. (The psuedocode for the algorithm is given below.)

```
Algorithm 1: Diameter-Estimator
    Pick \(k\) arbitrarily from \(\{1, \cdots, m\}\);
    \(\ell=\operatorname{argmax}_{j} \mathcal{D}_{k, j}\);
    Return \(k, \ell, \mathcal{D}_{k, \ell}\)
```

Running Time - Note that we read only $O(m)=O(\sqrt{n})$ entries of the distance matrix \mathcal{D}.
Correctness - Let $D=\mathcal{D}_{i, j}$. Now note that

$$
\begin{aligned}
\mathcal{D}_{i, j} & \leq \mathcal{D}_{i, k}+\mathcal{D}_{k, j} & & {[\text { Triangle Inequality }] } \\
& \leq \mathcal{D}_{k, i}+\mathcal{D}_{k, j} & & {[\text { Symmetry }] } \\
& \leq \mathcal{D}_{k, \ell}+\mathcal{D}_{k, \ell} & & {[\text { Definition of } \ell] } \\
& =\mathcal{D}_{k, \ell} & &
\end{aligned}
$$

The desired result follows immediately.
Lower Bound - We now sketch an argument that any $(2-\delta)$ approximation to the diameter requires reading the entire matrix \mathcal{D}. (This answers a question raised by one of the students in class.)

- Define the distance matrix \mathcal{M} to have $\mathcal{M}_{i, i}=0$ and $\mathcal{M}_{i, j}=1$ otherwise.
- Define the distance matrix $\mathcal{N}^{i, j}$ to be identical to $\mathcal{M} \operatorname{except} \mathcal{N}_{i, j}^{i, j}=\mathcal{N}_{j, i}^{i, j}=(2-\delta)$.
- It can easily be checked that $\mathcal{M}, \mathcal{N}^{i, j}$ satisfy the triangle inequality and symmetry. Furthermore, even if one is given the promise that the distance matrix \mathcal{D} is one of the $\binom{m}{2}+1$ examples given it takes take $\Theta\left(m^{2}\right)$ time to tell if any of the entries is larger than 1 giving the desired lower bound as $\mathcal{N}^{i, j}$ has diameter $2-\delta$ while \mathcal{M} has diameter 1 .

3 Number of Connected Components in a Graph

Our second example of a (randomized) sublinear time algorithm that will be an εn-approximation the the diameter of an input graph G in time poly $(1 / \varepsilon)$.

Input - We are given $G=(V, E)$ in an adjacency list representation. As is standard, we will let $n=|V|$ and $m=|E|$.

Output - Let C denote the number of connected components. We will output \widehat{C} such $|C-\widehat{C}| \leq \varepsilon n$ with probability $3 / 4$.

The first key insight we will need is an alternate characterization of the number of connected components of a graph G.
Lemma 1 Fix a graph $G=(V, E)$. For a vertex $v \in V$, let n_{v} denote the number of vertices in the connected component of v and let C be the total number of connected components. Then we have that

$$
C=\sum_{v \in V} \frac{1}{n_{v}} .
$$

Proof By splitting G into connected components, it suffices to prove the claim for a graph G which is connected. However, in this case, note that $n_{v}=|V|$ and therefore

$$
\sum_{v \in V} \frac{1}{n_{v}}=|V|\left(\frac{1}{|V|}\right)=1
$$

as desired.
One naive attempt given this characterization is to simply sample small number of vertices v at random from the graph G, compute n_{v} for each sampled vertex, and output n the average of $1 / n_{v}$ over the vertices sampled. However, there is a large issue in that computing n_{v} already is already takes linear time! The second insight therefore is to realize that if n_{v} is large, $1 / n_{v}$ is small and therefore we do not need to compute n_{v} as precisely.

Lemma 2 Let

$$
\widehat{n_{v}}=\min \left(n_{v}, 2 / \varepsilon\right) .
$$

We have that

$$
\left|\sum_{v \in V} \frac{1}{n_{v}}-\sum_{v \in V} \frac{1}{\widehat{n_{v}}}\right| \leq \frac{\varepsilon n}{2}
$$

and that for a given vertex $v, \widehat{n_{v}}$ can be computed in $O\left(1 / \varepsilon^{2}\right)$ time.
Proof We first prove that

$$
\left|\frac{1}{n_{v}}-\frac{1}{\widehat{n_{v}}}\right| \leq \frac{\varepsilon}{2} ;
$$

the first claim then follows by noting that by triangle inequality

$$
\left|\sum_{v \in V} \frac{1}{n_{v}}-\sum_{v \in V} \frac{1}{\widehat{n_{v}}}\right| \leq \sum_{v \in V}\left|\frac{1}{n_{v}}-\frac{1}{\widehat{n_{v}}}\right| \leq n \cdot \frac{\varepsilon}{2} .
$$

To prove that

$$
\left|\frac{1}{n_{v}}-\frac{1}{\widehat{n_{v}}}\right| \leq \frac{\varepsilon}{2}
$$

we split into cases based on the size of n_{v}.

- If $n_{v} \leq \frac{2}{\varepsilon}$, we are done immediately as $n_{v}=\widehat{n_{v}}$.
- If $n_{v} \geq \frac{2}{\varepsilon}$, note that $\frac{1}{n_{v}} \leq \frac{1}{\widehat{n_{v}}}$ and $\widehat{n_{v}}=\frac{2}{\varepsilon}$ and therefore

$$
\left|\frac{1}{n_{v}}-\frac{1}{\widehat{n_{v}}}\right|=\frac{1}{\widehat{n_{v}}}-\frac{1}{n_{v}} \leq \frac{1}{\widehat{n_{v}}}=\frac{2}{\varepsilon}
$$

Now in order to compute the $\widehat{n_{v}}$ in $\Theta\left(1 / \varepsilon^{2}\right)$ time we simply run BFS starting at the vertex v and output the number of vertices in the corresponding component, short-cutting if we ever have processed more than $2 / \varepsilon$ vertices. Note that if the connected component of v is less than $2 / \varepsilon$ vertices we will read the entire component in $O\left(1 / \varepsilon^{2}\right)$-time and thus we are able to compute n_{v} and thus $\widehat{n_{v}}$ exactly. Otherwise we have $n_{v} \geq \frac{2}{\varepsilon}$ and the BFS will short-circuit after reading $2 / \varepsilon$ vertices and we will compute (correctly) that $\widehat{n_{v}}=\frac{2}{\varepsilon}$. For the running time in this case note that we only process $2 / \epsilon$-vertices and for each vertex we only process at most $2 / \epsilon$ vertices in total (as otherwise we can short-circuit).

Given the above we are now in position to state our algorithm.
Algorithm - Choose $s=\Theta\left(1 / \varepsilon^{2}\right)$ vertices v_{1}, \ldots, v_{s} uniformly at random from the the vertices of G. Compute $\widehat{n_{v_{i}}}$ for $i \in[s]$ and return

$$
\widehat{C}:=\frac{n}{s}\left(\sum_{i \in[s]} \frac{1}{\widehat{v_{v_{i}}}}\right)
$$

(The psuedocode for the algorithm is given below.)

```
Algorithm 2: Connected Components-Estimator
    sum \(\leftarrow 0\);
    for \(1 \leq i \leq s\) do
        Sample \(v_{i}\) uniformly from \(V\);
        \(\operatorname{sum} \leftarrow \operatorname{sum}+1 / \widehat{n_{i}} ;\)
    \(\widehat{C} \leftarrow \frac{n}{s}(\) sum \()\) return \(\widehat{C}\)
```

Running Time - The running time is dominated by computing $\widehat{n_{v_{i}}}$ for sampled vertices $n_{v_{i}}$. There are $\Theta\left(1 / \varepsilon^{2}\right)$ vertices and each run takes $\Theta\left(1 / \varepsilon^{2}\right)$-times giving a total running time of $\Theta\left(1 / \varepsilon^{4}\right)$.

Correctness - In order to prove correctness it essentially suffices by Lemma 2 to prove that

$$
\frac{1}{s} \sum_{i \in[s]} \frac{1}{\widehat{n_{v}}} \approx \frac{1}{n} \sum_{v \in V} \frac{1}{\widehat{n_{v}}}
$$

the key tool here will be Chernoff bounds.
Theorem 3 (Chernoff Bounds) Fix $\delta \in[0,1]$. Let X_{i} be iid random variables in $[0,1]$ with $p=\mathbb{E}\left[X_{i}\right]$. Let $X=\sum_{i=1}^{r} X_{i}$ and $\mu=\mathbb{E}[X]=r p$. Then

$$
\mathbb{P}[|X-\mu| \geq \delta \mu]=\mathbb{P}[|X-r p| \geq \delta r p] \leq \exp \left(-\Theta\left(\delta^{2} r p\right)\right)
$$

Theorem 4 Let C be the number of connected components of G. The output of Algorithm 2, \widehat{C}, satisfies that

$$
\mathbb{P}[|C-\widehat{C}| \geq \varepsilon n] \leq \frac{1}{4}
$$

Proof By the first part of Lemma 2 and triangle inequality it suffices to prove that

$$
\left.\mathbb{P}\left[\left|\sum_{v \in V} \frac{1}{\widehat{n_{v}}}-\widehat{C}\right|\right] \geq \frac{\varepsilon n}{2}\right] \leq \frac{1}{4}
$$

Note by definition that

$$
\widehat{C}=\frac{n}{s}\left(\sum_{i \in[s]} \frac{1}{\widehat{n_{v_{i}}}}\right)
$$

and therefore the desired claim is equivalent to

$$
\left.\mathbb{P}\left[\left|\sum_{v \in V} \frac{1}{\widehat{n_{v}}}-\frac{n}{s}\left(\sum_{i \in[s]} \frac{1}{\widehat{n_{v_{i}}}}\right)\right|\right] \geq \frac{\varepsilon n}{2}\right] \leq \frac{1}{4}
$$

This is equivalent to the expression

$$
\left.\left.\mathbb{P}\left[\left|\left(\sum_{i \in[s]} \frac{1}{\widehat{n_{v_{i}}}}\right)-\frac{s}{n} \sum_{v \in V} \frac{1}{\widehat{n_{v}}}\right|\right] \geq \frac{\varepsilon s}{2}\right]=\mathbb{P}\left[\left|\left(\sum_{i \in[s]} \frac{1}{\widehat{n_{v_{i}}}}\right)-\mathbb{E}\left[\left(\sum_{i \in[s]} \frac{1}{\widehat{n_{v_{i}}}}\right)\right]\right|\right] \geq \frac{\varepsilon s}{2}\right] \leq \frac{1}{4}
$$

Note that we have simply applied linearity of expectation at this stage. This is precisely the setup for Chernoff-bounds and now it is simply a matter of picking parameters appropriately.

First note that expected summand is at least $\epsilon / 2$ as we always have $1 / \widehat{n_{v}} \geq \frac{\epsilon}{2}$ and thus $p \geq \frac{\epsilon}{2}$. Now choosing $\delta=\frac{\epsilon}{2 p} \leq 1$ we find that

$$
\left.\mathbb{P}\left[\left|\left(\sum_{i \in[s]} \frac{1}{\widehat{n_{v_{i}}}}\right)-\mathbb{E}\left[\left(\sum_{i \in[s]} \frac{1}{\widehat{n_{v_{i}}}}\right)\right]\right|\right] \geq \frac{\varepsilon s}{2}\right] \leq \exp \left(-\Theta\left(\delta^{2} s p\right)\right)=\exp \left(-\Theta\left(\varepsilon^{2} s /(4 p)\right)\right) \leq \exp \left(-\Theta\left(\varepsilon^{2} s\right)\right)
$$

Note in the final step we have used that $p \leq 1$ which follows as $1 / \widehat{n_{v}} \in[0,1]$. Thus taking s a sufficiently large multiple of $\Theta\left(1 / \varepsilon^{2}\right)$ the result follows.

