
6.889 Sublinear Time Algorithms September 1, 2020

Lecture 1
Lecturer: Ronitt Rubinfeld Scribe: Mehtaab Sawhney

1 Outline

The following topics were addressed during the first lecture.

• Overview of the Course/Sublinear Algorithms

• Diameter of a Point Set

• Number of Connected Components in a Graph

We refer the reader to the slides on the course homepage for the first item.

2 Diameter of a Point Set

Our first example of a sublinear algorithm (due to Piotr Indyk) will be computing a 2-approximation to
the diameter of a point set in sublinear time. This algorithm has the unique property of being the only
deterministic algorithm in this class.

Input - We are given m points described by a distance matrix D such that Di,j is the distance from
i to j. Furthermore we are guaranteed that the distances satisfy

• (Symmetry) Di,j = Dj,i for all i, j ∈ [m]

• (Triangle Inequality) Di,j ≤ Di,k +Dk,j for all i, j, k ∈ [m]

Note here that the input size is n = Θ(m2) as we are given all pairs of distances.
Output - Let the diameter D = maxi,jDi,j . Our output is a pair (k, `) such that Dk,` ≥ D/2 (e.g.

a 2-approximation to the diameter)
Algorithm - Choose an arbitrary index k. Output (k, `) such that Dk,` is maximized. (The psue-

docode for the algorithm is given below.)

Algorithm 1: Diameter-Estimator

1 Pick k arbitrarily from {1, · · · ,m} ;
2 ` = argmaxj Dk,j ;
3 Return k, `,Dk,`

Running Time - Note that we read only O(m) = O(
√
n) entries of the distance matrix D.

Correctness - Let D = Di,j . Now note that

Di,j ≤ Di,k +Dk,j [Triangle Inequality]

≤ Dk,i +Dk,j [Symmetry]

≤ Dk,` +Dk,` [Definition of `]

= Dk,`.

The desired result follows immediately.
Lower Bound - We now sketch an argument that any (2−δ) approximation to the diameter requires

reading the entire matrix D. (This answers a question raised by one of the students in class.)

• Define the distance matrix M to have Mi,i = 0 and Mi,j = 1 otherwise.

1

• Define the distance matrix N i,j to be identical to M except N i,j
i,j = N i,j

j,i = (2− δ).

• It can easily be checked that M,N i,j satisfy the triangle inequality and symmetry. Furthermore,
even if one is given the promise that the distance matrix D is one of the

(
m
2

)
+ 1 examples given it

takes take Θ(m2) time to tell if any of the entries is larger than 1 giving the desired lower bound
as N i,j has diameter 2− δ while M has diameter 1.

3 Number of Connected Components in a Graph

Our second example of a (randomized) sublinear time algorithm that will be an εn-approximation the
the diameter of an input graph G in time poly(1/ε).

Input - We are given G = (V,E) in an adjacency list representation. As is standard, we will let
n = |V | and m = |E|.

Output - Let C denote the number of connected components. We will output Ĉ such |C − Ĉ| ≤ εn
with probability 3/4.

The first key insight we will need is an alternate characterization of the number of connected com-
ponents of a graph G.

Lemma 1 Fix a graph G = (V,E). For a vertex v ∈ V , let nv denote the number of vertices in the
connected component of v and let C be the total number of connected components. Then we have that

C =
∑
v∈V

1

nv
.

Proof By splitting G into connected components, it suffices to prove the claim for a graph G which
is connected. However, in this case, note that nv = |V | and therefore∑

v∈V

1

nv
= |V |

(
1

|V |

)
= 1

as desired.

One naive attempt given this characterization is to simply sample small number of vertices v at
random from the graph G, compute nv for each sampled vertex, and output n the average of 1/nv over
the vertices sampled. However, there is a large issue in that computing nv already is already takes linear
time! The second insight therefore is to realize that if nv is large, 1/nv is small and therefore we do not
need to compute nv as precisely.

Lemma 2 Let
n̂v = min(nv, 2/ε).

We have that ∣∣∣∣∑
v∈V

1

nv
−
∑
v∈V

1

n̂v

∣∣∣∣ ≤ εn

2

and that for a given vertex v, n̂v can be computed in O(1/ε2) time.

Proof We first prove that ∣∣∣∣ 1

nv
− 1

n̂v

∣∣∣∣ ≤ ε

2
;

the first claim then follows by noting that by triangle inequality∣∣∣∣∑
v∈V

1

nv
−
∑
v∈V

1

n̂v

∣∣∣∣ ≤∑
v∈V

∣∣∣∣ 1

nv
− 1

n̂v

∣∣∣∣ ≤ n · ε2 .
2

To prove that ∣∣∣∣ 1

nv
− 1

n̂v

∣∣∣∣ ≤ ε

2

we split into cases based on the size of nv.

• If nv ≤ 2
ε , we are done immediately as nv = n̂v.

• If nv ≥ 2
ε , note that 1

nv
≤ 1

n̂v
and n̂v = 2

ε and therefore∣∣∣∣ 1

nv
− 1

n̂v

∣∣∣∣ =
1

n̂v
− 1

nv
≤ 1

n̂v
=

2

ε
.

Now in order to compute the n̂v in Θ(1/ε2) time we simply run BFS starting at the vertex v and output
the number of vertices in the corresponding component, short-cutting if we ever have processed more
than 2/ε vertices. Note that if the connected component of v is less than 2/ε vertices we will read the
entire component in O(1/ε2)-time and thus we are able to compute nv and thus n̂v exactly. Otherwise
we have nv ≥ 2

ε and the BFS will short-circuit after reading 2/ε vertices and we will compute (correctly)
that n̂v = 2

ε . For the running time in this case note that we only process 2/ε-vertices and for each vertex
we only process at most 2/ε vertices in total (as otherwise we can short-circuit).

Given the above we are now in position to state our algorithm.
Algorithm - Choose s = Θ(1/ε2) vertices v1, . . . , vs uniformly at random from the the vertices of

G. Compute n̂vi for i ∈ [s] and return

Ĉ :=
n

s

(∑
i∈[s]

1

n̂vi

)
.

(The psuedocode for the algorithm is given below.)

Algorithm 2: Connected Components-Estimator

1 sum← 0;
2 for 1 ≤ i ≤ s do
3 Sample vi uniformly from V ;
4 sum← sum + 1/n̂vi ;

5 Ĉ ← n
s (sum) return Ĉ

Running Time - The running time is dominated by computing n̂vi for sampled vertices nvi . There
are Θ(1/ε2) vertices and each run takes Θ(1/ε2)-times giving a total running time of Θ(1/ε4).

Correctness - In order to prove correctness it essentially suffices by Lemma 2 to prove that

1

s

∑
i∈[s]

1

n̂v
≈ 1

n

∑
v∈V

1

n̂v
;

the key tool here will be Chernoff bounds.

Theorem 3 (Chernoff Bounds) Fix δ ∈ [0, 1]. Let Xi be iid random variables in [0, 1] with p = E[Xi].
Let X =

∑r
i=1Xi and µ = E[X] = rp. Then

P[|X − µ| ≥ δµ] = P[|X − rp| ≥ δrp] ≤ exp(−Θ(δ2rp)).

3

Theorem 4 Let C be the number of connected components of G. The output of Algorithm 2, Ĉ, satisfies
that

P
[∣∣∣∣C − Ĉ∣∣∣∣ ≥ εn] ≤ 1

4
.

Proof By the first part of Lemma 2 and triangle inequality it suffices to prove that

P
[∣∣∣∣∑
v∈V

1

n̂v
− Ĉ

∣∣∣∣] ≥ εn

2

]
≤ 1

4
.

Note by definition that

Ĉ =
n

s

(∑
i∈[s]

1

n̂vi

)
and therefore the desired claim is equivalent to

P
[∣∣∣∣∑
v∈V

1

n̂v
− n

s

(∑
i∈[s]

1

n̂vi

)∣∣∣∣] ≥ εn

2

]
≤ 1

4
.

This is equivalent to the expression

P
[∣∣∣∣(∑

i∈[s]

1

n̂vi

)
− s

n

∑
v∈V

1

n̂v

∣∣∣∣] ≥ εs

2

]
= P

[∣∣∣∣(∑
i∈[s]

1

n̂vi

)
− E

[(∑
i∈[s]

1

n̂vi

)]∣∣∣∣] ≥ εs

2

]
≤ 1

4
.

Note that we have simply applied linearity of expectation at this stage. This is precisely the setup for
Chernoff-bounds and now it is simply a matter of picking parameters appropriately.

First note that expected summand is at least ε/2 as we always have 1/n̂v ≥ ε
2 and thus p ≥ ε

2 . Now
choosing δ = ε

2p ≤ 1 we find that

P
[∣∣∣∣(∑

i∈[s]

1

n̂vi

)
− E

[(∑
i∈[s]

1

n̂vi

)]∣∣∣∣] ≥ εs

2

]
≤ exp(−Θ(δ2sp)) = exp(−Θ(ε2s/(4p))) ≤ exp(−Θ(ε2s)).

Note in the final step we have used that p ≤ 1 which follows as 1/n̂v ∈ [0, 1]. Thus taking s a sufficiently
large multiple of Θ(1/ε2) the result follows.

4

