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1 Introduction to Distribution Testing

In the first half of this class, we’ve focused mainly on testing graph properties, ie. average degree, bipar-
titeness, planarity, etc. In this lecture, we introduce property testing of probability distributions. We begin
with some probability distribution P over a discrete domain D, where |D| = n. We know the size of n, but
for all i ∈ [n] where [n] denotes {1, 2, ..., n}, we do not know Pr(i) for the distribution P.

Our new model assumes we have an oracle that can sample IID random variables from the probability
distribution of interest P. We are interested in learning the shape of P, such as whether the distribution
is uniform, monotone increasing, or k-modal, and the properties of this distribution, such as whether it has
high entropy or large support (having many distinct elements appearing with a nonzero probability). Our
goal is to estimate these properties with a sublinear number of queries to our oracle with respect to the size
of n. This lecture focuses on testing whether an unknown distribution is close to the uniform distribution.

2 Testing Uniformity

Given an unknown distribution P and its domain D = [n], we would like to test whether P is close to the
uniform distribution over D, which we denote UD. We seek to create a tester with the following properties:

• If P = UD, we pass with probability at least 3
4 .

• If dist(P,UD) > ε, we fail.

Note that our tester depends on what metric we choose to use to measure distance between P and UD, and
today we will focus on two metrics, `1 and `2 distance.

2.1 `1 and `2 Distance

We are given two discrete probability distributions P and Q, and we assume their domains are both D = [n].
Let samples sP and sQ be randomly drawn from these distributions, respectively. We will define pi and qi
as Pr(sP = i) and Pr(sQ = i). Then we have the following definitions for `1 and `2 distance between P and
Q.

Definition 1 (`1 distance). We define `1 distance as

||P − Q||1 =
∑
i∈D
|pi − qi|.

Definition 2 (`2 distance). We define `2 distance as

||P − Q||2 =

√∑
i∈D

(pi − qi)2.

Note that
||P − Q||2 ≤ ||P −Q||1 ≤

√
n · ||P − Q||2
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where the first inequality holds because

||P − Q||22 =

n∑
i=1

|pi − qi|2 ≤
n∑

i=1

|pi − qi|2 + 2
∑

i,j,i<j

|pi − qi||pj − qj | =
( n∑

i=1

|pi − qi|
)2

= ||P − Q||21

and the second inequality holds due to the Cauchy-Schwartz inequality.

Example 1

Consider the probability distributions P and Q over [n] as follows:

• P = (1, 0, 0, ..., 0)

• Q = ( 1
n ,

1
n , ...,

1
n )
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Figure 1: Sample probability distributions when n = 10.

Then we can calculate the `1 and `2 distances as follows:

||P − Q||1 = (1− 1

n
) + (n− 1) · 1

n
≈ 2

||P − Q||2 = (1− 1

n
)2 + (n− 1) · 1

n2
≈ 1

Example 2

Now consider the disjoint probability distributions P and Q over [n]:

• P = ( 2
n ,

2
n , ...,

2
n , 0, 0, ..., 0)

• Q = (0, 0, ..., 0, 2
n ,

2
n , ...,

2
n )
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Figure 2: Sample probability distributions when n = 10.

Then we can calculate the `1 and `2 distances as follows:

||P − Q||1 = n · 2

n
= 1

||P − Q||2 =

√
n · ( 2

n
)2 =

2√
n

It is interesting to note that in the second example, the `2 distance is quite small despite the two distributions
being completely disjoint.

3 Plug-In Estimate for `1 Distance

Our first naive algorithm involves sampling our distribution P, and dividing the number of times we get an
element by the total number of samples. These estimates form our sample distribution P̂.

Algorithm 1: Plug-In Estimate

Input: ε
Take m samples from P.
Estimate pi with p̂i = # of times i occurs in sample

m .
If
∑n

i=1 |p̂i −
1
n | > ε we reject.

Otherwise, accept.

Naive Analysis

In our first attempt, we will try to pick a number of samples m such that for all elements i ∈ D, we have
that |p̂i − pi| < ε

2n . Then if we sum over all n elements in our domain, we have that ||P̂ − P||1 < ε
2 . By
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the triangle inequality, we have that if ||P̂ − P||1 < ε
2 and ||P̂ − UD||1 < ε

2 then ||P − UD||1 < ε. Thus if
||P − UD||1 > ε, we are likely to fail since there is some element that differs significantly from UD.

How large does m need to be in order for the inequality above to hold? Do we need to see each i ∈ D at
least once? Do we need to see them log n times? If we need to see each i at least once, we need Θ(n log n)
samples, but we can actually do much better than that. In fact, we will now show that we only need O(n)
samples.

Theorem 3. We can approximate any distribution to within ε with respect to `1 distance with high probability
in O( n

ε2 ) samples.

Proof. We first show that E||P̂ −P||1 ≤
√

n
m . Then we can simply take m = c2·n

ε2 , and our right side becomes
ε
c . By Markov’s Inequality, we see that

Pr(||P̂ − P||1 ≥ ε) ≤
E||P̂ − P||1

ε

which implies that

Pr(||P̂ − P||1 < ε) ≥ 1− 1

c

and if we choose c to be 4, we get our desired probability of passing/failing correctly with probability at
least 3

4 , which would complete our proof of the theorem.

Thus we proceed with showing that E||P̂ − P||1 ≤
√

n
m . We have that

E||P̂ − P||1 =
∑
i

E
[
|p̂i − pi|

]
≤
√∑

i

E(p̂i − pi)2 (Jensen’s Inequality)

=
∑
i

√
V ar(p̂i) (E(p̂i) = pi)

≤
∑
i

√
pi
m

≤
√
n

m
(Cauchy-Schwartz Inequality)

The second inequality holds because V ar(p̂i) = 1
m2 ·m · pi(1− pi) = pi(1−pi)

m ≤ pi

m .

Hence we must take Θ( n
ε2 ) samples in order to approximate our distribution with high probability, which is

not sublinear in n.

4 Estimating `2 Distance

Now we’d like to estimate closeness of our unknown distribution P to the uniform distribution with respect
to `2 distance. Again, assume that our domain D is [n], and n is known. We can simplify closeness to `2
distance with the following algebraic manipulation:
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||P − UD||2 =

n∑
i=1

(pi −
1

n
)2

=
∑

(p2i −
2pi
n

+
1

n2
)

=
∑

p2i −
2

n

∑
pi +

∑ 1

n2

=
∑

p2i −
2

n
+

1

n

=
∑

p2i −
1

n

Since we know n, we know what the second term 1
n is. Now we look at the first term,

∑
p2i . Note that this

term is equivalent to the probability that two samples drawn independently from P are the same. We define
this probability as the collision probability of P. Note that

∑
p2i = ||P||22 must be at least 1

n since we know
||P − UD||2 ≥ 0, which means that the uniform distribution has the smallest possible collision probability
over all distributions.

Our simplified form for `2 distance naturally proposes an idea for the algorithm where we try to estimate
the collision probability ĉ of P from repeated samples from our oracle, then we accept if ĉ is within some
small δ of the collision probability for the uniform distribution, 1

n .

How many samples do we need, and how small should we make our δ? We claim that the inequality

||P − UD|| < ε is satisfied when ĉ < 1
n + δ and we assume that |ĉ− ||P||2| < δ, and we choose δ = ε2

2 .

Assumption 4. We have taken a large enough number of samples s such that |ĉ − ||P||2| < δ holds with
probability at least 3

4 .

We will prove this statement in the next lecture, but assume for now that it holds. Then we can prove the
following claim.

Claim 5. We have that ||P − UD|| < ε is satisfied with high probability when ĉ < 1
n + δ and the above

assumption holds.

Proof. If P = UD, then ĉ ≤ ||P||22 + ε2

2 ≤
1
n + ε2

2 so we accept with probability at least 3
4 . If ||P − UD|| > ε

then ||P − UD||22 > ε2. Since ||P||2 = 1
n + ||P − UD|| > 1

n + ε2 so ĉ > ||P||2 − δ > ε2 + 1
n − δ = 1

n + ε2

2 and
we reject with probability at least 3

4 .

A naive implementation of estimating ĉ involves repeatedly taking pairs of samples and for each of these
pairs, counting the number of pairs that collide, and dividing by the total number of pairs. However, if we
take k samples, we see only Θ(k) pairs of collisions, which means that we might need at least Ω(n) samples
in order to see a collision. Thus we’d like to recycle by looking at all the pairs in a sample, which gives
Θ(k2) samples that may collide from k samples of P.

Algorithm 2: Recycling Method Estimate

Input: ε

δ ← ε2

2
Take s samples from P.
Count the total number of collisions c between any pair of samples.
Put ĉ← c

(s
2)

If ĉ < 1
n + δ, accept. Otherwise, fail.
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Analysis

Define σi,j as 1 if samples si and sj collide, and 0 otherwise. Then we have that

E(ĉ) =
E(
∑

i<j σi,j)(
s
2

) =

∑
i<j E(σi,j)(

s
2

) =

(
s
2

)(
s
2

)E(σi,j) = Pr(σi,j = 1) = ||P||2

Then by Chebyshev’s Inequality, we have that

Pr(|ĉ− ||P||2| > δ) ≤ V ar(ĉ)

δ2

Now we will state another lemma that will be proved in the next lecture, but we’ll assume it holds for now.

Lemma 6. V ar(
∑

i<j σi,j) ≤ 4(
(
s
2

)
||P||2)3/2

We know that V ar(ĉ) = 1

(s
2)

2V ar(
∑

i<j σi,j) from the way we defined ĉ before, so we can combine this with

the lemma to get that

V ar(ĉ) ≤ 1(
s
2

)2 · 4(

(
s

2

)
||P||2)3/2 = Θ(

||P||32
s

)

which means that we need to pick s in a way such that it depends on ||P||32. In the next lecture, we prove
the lemma and show that we only need s to be O( 1

ε4 ).
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