Lecture 14: Poissonization and Closeness Testing

Lecturer: Ronitt Rubinfeld Scribe: Pachara Sawettamalya

1 Overview

Today we will show how to test closeness of two unknown distributions in a sublinear number of samples. The Plug-in Estimator that we saw in previous lectures posits two major concerns: the dependency and the L_{2}-norm. We will introduce a few procedures that can help us resolve these issues.

2 Setting

2.1 Probability Distribution

For a probability distribution p on a discrete domain \mathcal{D}, for any $i \in \mathcal{D}$, we refer to $\operatorname{Pr}_{x \in \mathcal{D}}(x=i)$ as p_{i} or $p(i)$ depending on the context.

2.2 Distances and Norm

Suppose we have two distributions p and q on the same discrete domain \mathcal{D}, we define two distances functions as follows.

- L_{1}-distance : $\|p-q\|_{1}=\sum_{i \in \mathcal{D}}\left|p_{i}-q_{i}\right|$
- L_{2}-distance : $\|p-q\|_{2}=\sqrt{\sum_{i \in \mathcal{D}}\left(p_{i}-q_{i}\right)^{2}}$

In addition, we denote an $L_{2}-$ norm of a distribution p as $\sqrt{\sum_{i \in \mathcal{D}} p_{i}^{2}}$.

2.3 Closeness Testing

Given two unknown distributions p and q on the same size- n domain \mathcal{D}. This means we cannot make any prior assumption of p or q. The only operation allowed is to sample from either distributions. We want to determine a tester with the following behaviors.

- If $p=q$, then output PASS
- If $\|p-q\|_{1} \leq \varepsilon$, then output FAIL with probability at least $\frac{3}{4}$

The rest of this note is dedicated to showing the tester with $O\left(n^{\frac{2}{3}} \varepsilon^{-\frac{4}{3}}\right)$ samples. It is also worth recalling the typical strategy, such as the one used in the Plug-in Estimator, is as follows. We take a multiset S of m samples and count $x_{i}=$ the number of i 's occurrences in S . We note here that there are two major concerns about this approach: the dependency of x_{i} 's and the magnitude of p 's $L_{2}-$ norm.

3 Resolving Dependency via Poissonization

The first concern that arises is the dependency of x_{i} 's. This is because we only limit the total number of samples to m. For example, $x_{i}>\frac{m}{2}$ infers $x_{j}<\frac{m}{2}$ for the rest of the domain. To resolve this problem, we introduce the Poisson Distribution.

Definition $1 A$ random variable X is said to have a Poisson Distribution Pois (λ) if for any nonnegative integer $k, \operatorname{Pr}(x=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}$. In addition, we have $\mathbb{E}[X]=\operatorname{Var}[X]=\lambda$.

We now propose two algorithms for sampling x_{i} 's. In Algorithm 1, we first fix \hat{m} drawn from a Poisson distribution and do \hat{m} sampling, while in Algorithm 2, we individually sample the number of occurrences of x_{i} based on a Poisson distribution.

```
Algorithm 1: Single-Poissonization \((p, \mathcal{D})\)
    \(\hat{m} \leftarrow \operatorname{Pois}(m)\)
    \(S_{1} \leftarrow \hat{m}\) samples from distribution \(p\)
    for \(i \in[n]\) do
        \(x_{i}^{(1)} \leftarrow\) occurrences of \(i\) in \(S_{1}\)
```

```
Algorithm 2 : Individual-Poissonization \((p, \mathcal{D})\)
    \(S_{2} \leftarrow \phi\)
    for \(i \in[n]\) do
        Sample \(x_{i}^{(2)} \in \operatorname{Pois}\left(m p_{i}\right)\) and add \(x_{i}^{(2)}\) copies of \(i\) to \(S_{2}\)
    Randomly permute \(S_{2}\)
```

Claim 2 The distributions of x_{i} 's in Algorithm 1 and Algorithm 2 are equivalent.
Proof Let's consider

$$
\begin{aligned}
\operatorname{Pr}\left(x_{i}^{(1)}=c\right) & =\sum_{k \geq c} \operatorname{Pr}(\hat{m}=k) \cdot\binom{k}{c} p_{i}^{k}\left(1-p_{i}\right)^{k-c} \\
& =\sum_{k \geq c} \frac{e^{-m} m^{k}}{k!} \cdot \frac{k!}{c!(k-c)!} \cdot p_{i}^{c}\left(1-p_{i}\right)^{k-c} \\
& =\frac{e^{-m} \cdot\left(m p_{i}\right)^{c}}{c!} \cdot \sum_{k \geq c} \frac{m^{k-c}\left(1-p_{i}\right)^{k-c}}{(k-c)!} \\
& =\frac{e^{-m} \cdot\left(m p_{i}\right)^{c}}{c!} \cdot e^{m\left(1-p_{i}\right)}=\frac{e^{-m p_{i}} \cdot\left(m p_{i}\right)^{c}}{c!}=\operatorname{Pr}\left(x_{i}^{(2)}=c\right)
\end{aligned}
$$

In addition, we can check that the joint distributions are equivalent in a similar analysis.
A key observation is that the sampling of $x_{i}^{(2)}$, from Algorithm 2 is independent. Since the distribution from both algorithms are equivalent, it must also be independent in Algorithm 1.

4 Resolving L_{2}-norm via Reduction

It is also known that the magnitude of distribution's L_{2}-norm affects the sample complexity. In particular, distributions with large $L_{2}-$ norm requires more samples to check. For this reason, we can now state our goal. We need a way to transform the initial distributions (p, q) to $\left(p^{\prime}, q^{\prime}\right)$ such that

- If $p=q$, then $p^{\prime}=q^{\prime}$
- If $\|p-q\|_{1} \geq \varepsilon$, then $\left\|p^{\prime}-q^{\prime}\right\|_{1} \geq \varepsilon$
- $\left\|p^{\prime}\right\|_{2}$ is small.

It is crucial to note that this reduction does not require $\left\|q^{\prime}\right\|_{2}$ to be small though it would be ideal. We will discuss in the next section that the small $\left\|q^{\prime}\right\|_{2}$ is unnecessary as we can circumvent it.

We propose a procedure to transform (p, q) into $\left(p^{\prime}, q^{\prime}\right)$ as follows.

```
Algorithm 3 : Transform \((p, q)\)
    \(\mathcal{D}^{\prime} \leftarrow \phi\)
    \(\hat{m} \leftarrow \operatorname{Pois}(m)\)
    \(S \leftarrow \hat{m}\) samples drawn from \(p\) over domain \([n]\)
    for \(i \in[n]\) do
        \(b_{i} \leftarrow\) occurrences of \(i\) in \(S\)
        add \(b_{i}+1\) elements \((i, 1),(i, 2), \ldots\left(i, b_{i}+1\right)\) to \(\mathcal{D}^{\prime}\)
    \(p^{\prime} \leftarrow\) a distribution on \(\mathcal{D}^{\prime}\) where \(p^{\prime}(i, j)=\frac{p_{i}}{b_{i}+1}\)
    \(q^{\prime} \leftarrow\) a distribution on \(\mathcal{D}^{\prime}\) where \(q^{\prime}(i, j)=\frac{q_{i}+1}{b_{i}+1}\)
    Output ( \(p^{\prime}, q^{\prime}\) )
```

Since p_{i} 's and q_{i} 's are unknown, we cannot directly construct p^{\prime} and q^{\prime} based on the probability distributions given in Line 7-8; however, there is an easy fix. For p^{\prime}, we can sample i from the distribution p and sample j uniformly from $\left\{1,2, \ldots, b_{i}+1\right\}$, and likewise for q^{\prime}.

Furthermore, notice that $\hat{m}=O(m)$ with high probability. This means that with high probability, Algorithm 3 only uses $O(m)$ samples. Plus, we have $\left|\mathcal{D}^{\prime}\right|=\sum_{i \in[n]} b_{i}+1=n+\sum_{i \in[n]} b_{i}=n+|S|=n+\hat{m}$.

We will now show that the output $\left(p^{\prime}, q^{\prime}\right)$ has the desired behaviors. The first behavior is trivially true - if $p=q$ then the probability distribution of p^{\prime} and q^{\prime} will be identical which is equivalent to $p^{\prime}=q^{\prime}$ 。

Claim $3\|p-q\|_{1}=\left\|p^{\prime}-q^{\prime}\right\|_{1}$
This is true as we can see that

$$
\left.\left\|p^{\prime}-q^{\prime}\right\|_{1}=\sum_{i \in[n]} \sum_{j \in\left[b_{i}+1\right]}\left|p^{\prime}(i, j)-q^{\prime}(i, j)=\sum_{i \in[n]} \sum_{j \in\left[b_{i}+1\right]} \frac{\left|p_{i}-q_{i}\right|}{b_{i}+1}=\sum_{i \in[n]}\right| p_{i}-q_{i} \right\rvert\,=\|p-q\|_{1}
$$

Claim $4 \mathbb{E}\left[\left\|p^{\prime}\right\|_{2}^{2}\right] \leq \frac{1}{m}$
Proof First of all, recall that as we discussed in Section 3, the distribution of b_{i} is indeed Pois $\left(\lambda_{i}\right)$ when $\lambda_{i}=m p_{i}$. This implies

$$
\mathbb{E}\left[\frac{1}{b_{i}+1}\right]=\sum_{k \geq 0} \frac{1}{k+1} \cdot \frac{e^{-\lambda_{i}} \lambda_{i}^{k}}{k!}=\frac{1}{\lambda_{i}} \cdot \sum_{k \geq 1} \frac{e^{-\lambda_{i}} \lambda_{i}^{k+1}}{(k+1)!} \leq \frac{1}{\lambda_{i}}=\frac{1}{m p_{i}}
$$

Therefore we will have

$$
\begin{aligned}
\mathbb{E}\left[\left\|p^{\prime}\right\|_{2}^{2}\right] & =\mathbb{E}\left[\sum_{i \in[n]} \sum_{j \in\left[b_{i}+1\right]} p^{\prime}(i, j)^{2}\right]=\mathbb{E}\left[\sum_{i \in[n]} \sum_{j \in\left[b_{i}+1\right]}\left(\frac{p_{i}}{b_{i}+1}\right)^{2}\right]=\mathbb{E}\left[\sum_{i \in[n]} \frac{p_{i}^{2}}{b_{i}+1}\right] \\
& =\sum_{i \in[n]} p_{i}^{2} \cdot \mathbb{E}\left[\frac{1}{b_{i}+1}\right] \leq \sum_{i \in[n]}\left(p_{i}^{2} \cdot \frac{1}{m p_{i}}\right)=\frac{1}{m} \cdot \sum_{i \in[n]} p_{i}=\frac{1}{m}
\end{aligned}
$$

This completes the proof.

5 Circumventing Large $\left\|q^{\prime}\right\|_{2}$

Theorem 5 Given distributions p, q on a discrete domain of size n and $b \geq \max \left(\|p\|_{2},\|q\|_{2}\right)$. Then we can distinguish the case of $p=q$ from $\|p-q\|_{1} \geq \varepsilon$ in $O\left(\frac{b n}{\varepsilon^{2}}\right)$ samples.

We will not prove this theorem, but we rather give a sketch proof to a useful corollary.
Corollary 6 Given distributions p, q on a discrete domain of size n and $b \geq \min \left(\|p\|_{2},\|q\|_{2}\right)$. Then we can distinguish the case of $p=q$ from $\|p-q\|_{1} \geq \varepsilon$ in $O\left(\frac{b n}{\varepsilon^{2}}+\sqrt{n}\right)$ samples.

Sketch of Proof The following procedure gives the desired tester.

1. Estimate $\|p\|_{2}$ and $\|q\|_{2}$ within a multiplicative factor of C when $C>1$ is a constant. This can be done within $O(\sqrt{n})$ samples.
2. If the estimated $\|p\|_{2}$ and $\|q\|_{2}$ are more than a multiplicative factor of C away, output FAIL. We can do this because if it is the case, we can guarantee that $\|p\|_{2} \neq\|q\|_{2}$ which implies $p \neq q$.
3. Run the tester from Theorem 5 with $b^{\prime}=C b$, and gives the same output. We only need to verify that $b^{\prime}=C b \geq C \cdot \min \left(\|p\|_{2},\|q\|_{2}\right) \geq \max \left(\|p\|_{2},\|q\|_{2}\right)$ where the last inequality follows from the fact that $\|p\|_{2}$ and $\|q\|_{2}$ are at most a multiplicative factor of C away. This only uses $O\left(\frac{b n}{\varepsilon^{2}}\right)$ samples according to Theorem 5.

This completes the proof.
The key takeaway from Corollary 6 is that we only need $\left\|p^{\prime}\right\|_{2}$ to be small but not necessary for $\left\|q^{\prime}\right\|_{2}$. This because we can set $b=\left\|p^{\prime}\right\|_{2}$ regardless of q^{\prime}.

6 The Closeness Tester

Now we can give a tester for closeness between two distributions as follows.

```
Algorithm 4: Closeness-Tester \((p, q)\)
    \(k \leftarrow n^{\frac{2}{3}} \varepsilon^{-\frac{4}{3}}\)
    \(\left(p^{\prime}, q^{\prime}\right) \leftarrow(p, q)\) transformed by Algorithm 3 with \(m=k\)
    Run the tester from Corollary 6 on \(\left(p^{\prime}, q^{\prime}\right)\) and give the same output
```

To begin with, we notice that Algorithm 4 can distinguish $p^{\prime}=q^{\prime}$ and $\left\|p^{\prime}-q^{\prime}\right\|_{1} \geq \varepsilon$ due to Corollary 6. Plus, in section 4 we have shown that (p, q) and $\left(p^{\prime}, q^{\prime}\right)$ are equivalent in closeness testing. Therefore Algorithm 4 successfully distinguishes $p=q$ and $\|p-q\|_{1} \geq \varepsilon$.

Last but not least, let's analyze the number of samples needed.
Claim 7 With high probability, Algorithm 4 uses $O\left(n^{\frac{2}{3}} \varepsilon^{-\frac{4}{3}}\right)$ samples
Proof We have established that with high probability, transforming (p, q) into $\left(p^{\prime}, q^{\prime}\right)$ uses at most $O(k)=O\left(n^{\frac{2}{3}} \varepsilon^{-\frac{4}{3}}\right)$ samples.

In addition, Claim 4 gives $\mathbb{E}\left(\left\|p^{\prime}\right\|_{2}^{2}\right) \leq \frac{1}{k}$ which implies $\left\|p^{\prime}\right\|_{2}=O\left(\frac{1}{\sqrt{k}}\right)$ with high probability. This also means we can set $b=O\left(\frac{1}{\sqrt{k}}\right)$ in Corollary 6 , and the tester will use $O\left(\frac{n}{\varepsilon^{2} \sqrt{k}}+\sqrt{n}\right)=O\left(n^{\frac{2}{3}} \varepsilon^{-\frac{4}{3}}\right)$ samples.

In total, Algorithm 4 uses $O\left(n^{\frac{2}{3}} \varepsilon^{-\frac{4}{3}}\right)$ samples.

