6.889 Sublinear Time Algorithms October 20, 2020

Lecture 14: Poissonization and Closeness Testing

Lecturer: Ronitt Rubinfeld Scribe: Pachara Sawettamalya

1 Overview

Today we will show how to test closeness of two unknown distributions in a sublinear number of samples.
The Plug-in Estimator that we saw in previous lectures posits two major concerns: the dependency and
the Lo-norm. We will introduce a few procedures that can help us resolve these issues.

2 Setting
2.1 Probability Distribution

For a probability distribution p on a discrete domain D, for any i € D, we refer to Pryep(z = 1) as p;
or p(i) depending on the context.
2.2 Distances and Norm

Suppose we have two distributions p and ¢ on the same discrete domain D, we define two distances
functions as follows.

o Ly-distance : ||p —q|l1 = > .cp Pi — @il

o Ly-distance : ||p —qll2 = /X iep (Pi — 4:)*
In addition, we denote an Ly—norm of a distribution p as /> . p p.

2.3 Closeness Testing

Given two unknown distributions p and ¢ on the same size-n domain D. This means we cannot make
any prior assumption of p or ¢q. The only operation allowed is to sample from either distributions. We
want to determine a tester with the following behaviors.

e If p = ¢, then output PASS

o If ||p — ¢||1 < e, then output FAIL with probability at least %

The rest of this note is dedicated to showing the tester with O(n%e:*%) samples. It is also worth
recalling the typical strategy, such as the one used in the Plug-in Estimator, is as follows. We take a
multiset S of m samples and count x; = the number of i’s occurrences in S. We note here that there are
two major concerns about this approach: the dependency of x;’s and the magnitude of p’s Ly—norm.

3 Resolving Dependency via Poissonization

The first concern that arises is the dependency of z;’s. This is because we only limit the total number of
samples to m. For example, z; > 3 infers x; < 5 for the rest of the domain. To resolve this problem,

we introduce the Poisson Distribution.

Definition 1 A random variable X is said to have a Poisson Distribution Pois(X) if for any non-
negative integer k, Pr(z = k) = eflzﬁk, In addition, we have E[X] = Var[X] = \.

We now propose two algorithms for sampling x;’s. In Algorithm 1, we first fix /i drawn from a
Poisson distribution and do m sampling, while in Algorithm 2, we individually sample the number of
occurrences of x; based on a Poisson distribution.

Algorithm 1 : Single-Poissonization(p, D)

m + Pois(m)
: S1 + m samples from distribution p
: for i € [n] do

oW o

1 ..
IE)« occurrences of i in S

Algorithm 2 : Individual-Poissonization(p, D)
: S2 < ¢
: for i € [n] do
(2)

%

1

2

3: Sample z;~ € Pois(mp;) and add xEQ) copies of i to S,
4

: Randomly permute S,

Claim 2 The distributions of x;’s in Algorithm 1 and Algorithm 2 are equivalent.

Proof Let’s consider

1 . k e
k>c
e~ mmb k! . &
= . . C 1 _ i —C
> at—ap P —p)
k>c
_ e~ m . (mpl_)c . Z mkfc(l _ pi)kfc
c! (k—¢)!
k>c
_ e ™ - (mp;)° cem(1=pi) — eiimpi - (mpi)© = PI‘(CC(?) =c¢)
c! c! ‘
In addition, we can check that the joint distributions are equivalent in a similar analysis. |

A key observation is that the sampling of {,CEQ)’S from Algorithm 2 is independent. Since the distri-
bution from both algorithms are equivalent, it must also be independent in Algorithm 1.

4 Resolving Lo-norm via Reduction

It is also known that the magnitude of distribution’s Lo—norm affects the sample complexity. In par-
ticular, distributions with large Ls—norm requires more samples to check. For this reason, we can now
state our goal. We need a way to transform the initial distributions (p, q) to (p,¢’) such that

e If p=gq, then p’ = ¢
o If |[p—qll1 > &, then |[p' — ¢'[L > ¢

e ||p'||2 is small.

Tt is crucial to note that this reduction does not require ||¢’||2 to be small though it would be ideal.
We will discuss in the next section that the small ||¢||2 is unnecessary as we can circumvent it.
We propose a procedure to transform (p, q) into (p’, ¢') as follows.

Algorithm 3 : Transform(p, q)
D «— ¢
m + Pois(m)
S <« 7 samples drawn from p over domain [n]
for i € [n] do
b; < occurrences of 7 in S
add b; + 1 elements (i, 1), (4,2), ..

(i, b
p < a distribution on D’ where p (z,]) L
¢ + a distribution on D’ where ¢'(i,j) =

Output (p',¢')

Since p;’s and ¢;’s are unknown, we cannot directly construct p’ and ¢’ based on the probability
distributions given in Line 7-8; however, there is an easy fix. For p’, we can sample 7 from the distribution
p and sample j uniformly from {1,2,...,b; + 1}, and likewise for ¢'.

Furthermore, notice that /i = O(m) with high probability. This means that with high probability,
Algorithm 3 only uses O(m) samples. Plus, we have [D'[=3, bi + 1 = n+3 20, bi = nt[S| = ntn.

We will now show that the output (p’,¢’) has the desired behaviors. The first behavior is trivially
true — if p = ¢ then the probability distribution of p’ and ¢’ will be identical which is equivalent to
p=q.

Claim 3 [|p —qlL = [[p' — ¢|lx
This is true as we can see that
.. . |pi —Qz‘\
W =dlh=2 > We)-d@=>3 > =5 => i-al=lp-dbh
i€ln] jE[bi+1] i€ln) jelbi+1] i€[n]
Claim 4 E [|[p'|3] < &

Proof First of all, recall that as we discussed in Section 3, the distribution of b; is indeed Pois();)
when \; = mp;. This implies

1] 1 e*A M e Ak“ i 1

Therefore we will have

2 2
_ 2 _ P
m[zzp =Y S () | -E| 2
€[n] jebi+1] i€[n] jE[bi+1] 1€[n]
1 1 1 1
Z 2 2 Z
p; %]
i€[n bi+1 ze[n] mpi m 1€[n] m
This completes the proof. |

5 Circumventing Large ||¢'||2

Theorem 5 Given distributions p,q on a discrete domain of size n and b > max (||p||2, ||q||2). Then we
can distinguish the case of p=gq from ||p—q|l1 > € in O (g—?) samples.

We will not prove this theorem, but we rather give a sketch proof to a useful corollary.

Corollary 6 Given distributions p,q on a discrete domain of size n and b > min (||p||z2, ||q|]2). Then we
can distinguish the case of p=q from ||p—q|l1 > ¢ in O (2—? +/n) samples.

Sketch of Proof The following procedure gives the desired tester.

1. Estimate ||p||2 and ||g||2 within a multiplicative factor of C' when C > 1 is a constant. This can
be done within O(y/n) samples.

2. If the estimated ||p||2 and ||g||2 are more than a multiplicative factor of C' away, output FAIL. We
can do this because if it is the case, we can guarantee that ||p||2 # ||¢||2 which implies p # q.

3. Run the tester from Theorem 5 with & = Cb, and gives the same output. We only need to verify
that & = Cb > C - min (||p||2, |l¢]l2) > max(]|p||2, ||¢||2) where the last inequality follows from
the fact that |[p||> and ||g||2 are at most a multiplicative factor of C' away. This only uses O (%)
samples according to Theorem 5.

This completes the proof. |

e key takeaway from Corollary 6 is that we only need [|p’[|2 to be small but not necessary for
The key tak y I Corollary 6 is that 1 d |[p||2 to b 11 but y |
[|¢’||2- This because we can set b = ||p’||> regardless of ¢'.

6 The Closeness Tester

Now we can give a tester for closeness between two distributions as follows.

Algorithm 4 : Closeness-Tester(p, q)

1: k+ 77%57%
2: (p',q') + (p,q) transformed by Algorithm 3 with m = k
3: Run the tester from Corollary 6 on (p/,¢’) and give the same output

To begin with, we notice that Algorithm 4 can distinguish p’ = ¢’ and ||p’ — ¢’||1 > & due to Corollary
6. Plus, in section 4 we have shown that (p, ¢) and (p’, ¢’) are equivalent in closeness testing. Therefore
Algorithm 4 successfully distinguishes p = ¢ and ||p — q||1 > e.

Last but not least, let’s analyze the number of samples needed.

Claim 7 With high probability, Algorithm 4 uses O(ngs_%) samples

Proof We have established that with high probability, transforming (p, q) into (p’,q’) uses at most
O(k) = O(n3e~3) samples.
In addition, Claim 4 gives E(||p/||3) < & which implies ||p/||z = O (i) with high probability. This

N
also means we can set b = O (ﬁ) in Corollary 6, and the tester will use O(ﬁ ++/n) = O(ngs_%)
samples.
In total, Algorithm 4 uses O(n%E_%) samples. |

