
6.889 Sublinear Time Algorithms October 20, 2020

Lecture 14: Poissonization and Closeness Testing
Lecturer: Ronitt Rubinfeld Scribe: Pachara Sawettamalya

1 Overview

Today we will show how to test closeness of two unknown distributions in a sublinear number of samples.
The Plug-in Estimator that we saw in previous lectures posits two major concerns: the dependency and
the L2-norm. We will introduce a few procedures that can help us resolve these issues.

2 Setting

2.1 Probability Distribution

For a probability distribution p on a discrete domain D, for any i ∈ D, we refer to Prx∈D(x = i) as pi
or p(i) depending on the context.

2.2 Distances and Norm

Suppose we have two distributions p and q on the same discrete domain D, we define two distances
functions as follows.

• L1-distance : ||p− q||1 =
∑
i∈D |pi − qi|

• L2-distance : ||p− q||2 =
√∑

i∈D (pi − qi)2

In addition, we denote an L2−norm of a distribution p as
√∑

i∈D p
2
i .

2.3 Closeness Testing

Given two unknown distributions p and q on the same size-n domain D. This means we cannot make
any prior assumption of p or q. The only operation allowed is to sample from either distributions. We
want to determine a tester with the following behaviors.

• If p = q, then output PASS

• If ||p− q||1 ≤ ε, then output FAIL with probability at least 3
4

The rest of this note is dedicated to showing the tester with O(n
2
3 ε−

4
3) samples. It is also worth

recalling the typical strategy, such as the one used in the Plug-in Estimator, is as follows. We take a
multiset S of m samples and count xi = the number of i’s occurrences in S. We note here that there are
two major concerns about this approach: the dependency of xi’s and the magnitude of p’s L2−norm.

3 Resolving Dependency via Poissonization

The first concern that arises is the dependency of xi’s. This is because we only limit the total number of
samples to m. For example, xi >

m
2 infers xj <

m
2 for the rest of the domain. To resolve this problem,

we introduce the Poisson Distribution.

Definition 1 A random variable X is said to have a Poisson Distribution Pois(λ) if for any non-

negative integer k, Pr(x = k) = e−λλk

k! . In addition, we have E[X] = Var[X] = λ.

1

We now propose two algorithms for sampling xi’s. In Algorithm 1, we first fix m̂ drawn from a
Poisson distribution and do m̂ sampling, while in Algorithm 2, we individually sample the number of
occurrences of xi based on a Poisson distribution.

Algorithm 1 : Single-Poissonization(p,D)

1: m̂← Pois(m)
2: S1 ← m̂ samples from distribution p
3: for i ∈ [n] do

4: x
(1)
i ← occurrences of i in S1

Algorithm 2 : Individual-Poissonization(p,D)

1: S2 ← φ
2: for i ∈ [n] do

3: Sample x
(2)
i ∈ Pois(mpi) and add x

(2)
i copies of i to S2

4: Randomly permute S2

Claim 2 The distributions of xi’s in Algorithm 1 and Algorithm 2 are equivalent.

Proof Let’s consider

Pr(x
(1)
i = c) =

∑
k≥c

Pr(m̂ = k) ·
(
k

c

)
pki (1− pi)k−c

=
∑
k≥c

e−mmk

k!
· k!

c!(k − c)!
· pci (1− pi)k−c

=
e−m · (mpi)c

c!
·
∑
k≥c

mk−c(1− pi)k−c

(k − c)!

=
e−m · (mpi)c

c!
· em(1−pi) =

e−mpi · (mpi)c

c!
= Pr(x

(2)
i = c)

In addition, we can check that the joint distributions are equivalent in a similar analysis.

A key observation is that the sampling of x
(2)
i ’s from Algorithm 2 is independent. Since the distri-

bution from both algorithms are equivalent, it must also be independent in Algorithm 1.

4 Resolving L2-norm via Reduction

It is also known that the magnitude of distribution’s L2−norm affects the sample complexity. In par-
ticular, distributions with large L2−norm requires more samples to check. For this reason, we can now
state our goal. We need a way to transform the initial distributions (p, q) to (p′, q′) such that

• If p = q, then p′ = q′

• If ||p− q||1 ≥ ε, then ||p′ − q′||1 ≥ ε

• ||p′||2 is small.

2

It is crucial to note that this reduction does not require ||q′||2 to be small though it would be ideal.
We will discuss in the next section that the small ||q′||2 is unnecessary as we can circumvent it.

We propose a procedure to transform (p, q) into (p′, q′) as follows.

Algorithm 3 : Transform(p, q)

1: D′ ← φ
2: m̂← Pois(m)
3: S ← m̂ samples drawn from p over domain [n]
4: for i ∈ [n] do
5: bi ← occurrences of i in S
6: add bi + 1 elements (i, 1), (i, 2), ...(i, bi + 1) to D′

7: p′ ← a distribution on D′ where p′(i, j) = pi
bi+1

8: q′ ← a distribution on D′ where q′(i, j) = qi
bi+1

9: Output (p′, q′)

Since pi’s and qi’s are unknown, we cannot directly construct p′ and q′ based on the probability
distributions given in Line 7-8; however, there is an easy fix. For p′, we can sample i from the distribution
p and sample j uniformly from {1, 2, ..., bi + 1}, and likewise for q′.

Furthermore, notice that m̂ = O(m) with high probability. This means that with high probability,
Algorithm 3 only usesO(m) samples. Plus, we have |D′| =

∑
i∈[n] bi + 1 = n+

∑
i∈[n] bi = n+|S| = n+m̂.

We will now show that the output (p′, q′) has the desired behaviors. The first behavior is trivially
true – if p = q then the probability distribution of p′ and q′ will be identical which is equivalent to
p′ = q′.

Claim 3 ||p− q||1 = ||p′ − q′||1

This is true as we can see that

||p′ − q′||1 =
∑
i∈[n]

∑
j∈[bi+1]

|p′(i, j)− q′(i, j) =
∑
i∈[n]

∑
j∈[bi+1]

|pi − qi|
bi + 1

=
∑
i∈[n]

|pi − qi| = ||p− q||1

Claim 4 E
[
||p′||22

]
≤ 1

m

Proof First of all, recall that as we discussed in Section 3, the distribution of bi is indeed Pois(λi)
when λi = mpi. This implies

E
[

1

bi + 1

]
=
∑
k≥0

1

k + 1
· e
−λiλki
k!

=
1

λi
·
∑
k≥1

e−λiλk+1
i

(k + 1)!
≤ 1

λi
=

1

mpi

Therefore we will have

E
[
||p′||22

]
= E

∑
i∈[n]

∑
j∈[bi+1]

p′(i, j)2

 = E

∑
i∈[n]

∑
j∈[bi+1]

(
pi

bi + 1

)2
 = E

∑
i∈[n]

p2i
bi + 1


=
∑
i∈[n]

p2i · E
[

1

bi + 1

]
≤
∑
i∈[n]

(
p2i ·

1

mpi

)
=

1

m
·
∑
i∈[n]

pi =
1

m

This completes the proof.

3

5 Circumventing Large ||q′||2
Theorem 5 Given distributions p, q on a discrete domain of size n and b ≥ max (||p||2, ||q||2). Then we
can distinguish the case of p = q from ||p− q||1 ≥ ε in O

(
bn
ε2

)
samples.

We will not prove this theorem, but we rather give a sketch proof to a useful corollary.

Corollary 6 Given distributions p, q on a discrete domain of size n and b ≥ min (||p||2, ||q||2). Then we
can distinguish the case of p = q from ||p− q||1 ≥ ε in O

(
bn
ε2 +

√
n
)
samples.

Sketch of Proof The following procedure gives the desired tester.

1. Estimate ||p||2 and ||q||2 within a multiplicative factor of C when C > 1 is a constant. This can
be done within O(

√
n) samples.

2. If the estimated ||p||2 and ||q||2 are more than a multiplicative factor of C away, output FAIL. We
can do this because if it is the case, we can guarantee that ||p||2 6= ||q||2 which implies p 6= q.

3. Run the tester from Theorem 5 with b′ = Cb, and gives the same output. We only need to verify
that b′ = Cb ≥ C · min (||p||2, ||q||2) ≥ max (||p||2, ||q||2) where the last inequality follows from
the fact that ||p||2 and ||q||2 are at most a multiplicative factor of C away. This only uses O

(
bn
ε2

)
samples according to Theorem 5.

This completes the proof.

The key takeaway from Corollary 6 is that we only need ||p′||2 to be small but not necessary for
||q′||2. This because we can set b = ||p′||2 regardless of q′.

6 The Closeness Tester

Now we can give a tester for closeness between two distributions as follows.

Algorithm 4 : Closeness-Tester(p, q)

1: k ← n
2
3 ε−

4
3

2: (p′, q′)← (p, q) transformed by Algorithm 3 with m = k
3: Run the tester from Corollary 6 on (p′, q′) and give the same output

To begin with, we notice that Algorithm 4 can distinguish p′ = q′ and ||p′−q′||1 ≥ ε due to Corollary
6. Plus, in section 4 we have shown that (p, q) and (p′, q′) are equivalent in closeness testing. Therefore
Algorithm 4 successfully distinguishes p = q and ||p− q||1 ≥ ε.

Last but not least, let’s analyze the number of samples needed.

Claim 7 With high probability, Algorithm 4 uses O(n
2
3 ε−

4
3) samples

Proof We have established that with high probability, transforming (p, q) into (p′, q′) uses at most

O(k) = O(n
2
3 ε−

4
3) samples.

In addition, Claim 4 gives E(||p′||22) ≤ 1
k which implies ||p′||2 = O

(
1√
k

)
with high probability. This

also means we can set b = O
(

1√
k

)
in Corollary 6, and the tester will use O(n

ε2
√
k

+
√
n) = O(n

2
3 ε−

4
3)

samples.
In total, Algorithm 4 uses O(n

2
3 ε−

4
3) samples.

4

