
6.889 Sublinear Time Algorithms December 1, 2020

Lecture 24
Lecturer: Slobodan Mitrović Scribe: Mihir Singhal

1 Topics covered

• Massively parallel algorithms for computing random walks

2 Background

Big data has become an increasingly important field in recent years, with total data volume now in the
tens of zettabytes. But unprocessed data cannot be used–it is extremely important to be able to actually
effectively use huge amounts of data. Several companies have been founded off a single algorithm, such
as Akamai and Google. This lecture will cover PageRank, the algorithm which caused Google to start.

3 Problem setting

The main problem we are concerned with is the following: how do you sample a random walk of length L
in a small number of parallel steps? The computational model we will using is that of massively parallel
computation, which is a good model for real-life data centers. In this model, there are N machines,
each with S space. Our graph is stored on all of these machines, so that there is just enough (within
a constant factor) space to store all these edges. In other words, the graph has Θ(NS) edges. The
algorithm proceeds in cycles, and each machine can send and receive up to S messages per cycle. We
care about the total number of cycles taken, and allow the local running time of each machine to be
arbitrarily large.

4 Algorithm idea

The naive algorithm would just sequentially sample each step of the random walk, going to a random
neighbor at each step, taking O(L) rounds in total. The question, then, is whether one can do faster
than this. The main idea we will use will be to predict where the prefixes of the random walk will end,
and prepare their continuations in advance.

The algorithm will be described in three steps: First, we describe an algorithm to sample a random
walk on undirected graphs. Then, we use this algorithm to obtain an algorithm for the PageRank
problem on directed graphs. Finally, we use the PageRank algorithm to get a random walk sampler on
directed graphs.

5 Part I: Random walks in undirected graphs

The main idea of this part is that of stitching. For example, instead of sampling a single random walk
of length L, we will instead have each vertex simulate a random walk of length L/2, and then stitch
together two walks. This will successfully halve the number of cycles needed.

However, when trying to apply this repeatedly by stitching together smaller walks, a problem emerges:
due to independence concerns, we cannot use the same walk starting from the same vertex multiple times.
Thus, we need a way to estimate how many times the random walk hits each vertex, in order to be able
to sample enough walks from each vertex.

We will use the stationary distribution of the random walk to perform this estimation. The stationary
distribution is defined as the probability distribution on vertices that is fixed by taking one step of the

1



random walk. In matrix notation, letting P be the walk matrix, the stationary distribution is the vector
π such that πP = P . When sampling random walks, after many steps, the number of walks which end
at any vertex v is approximately proportional to π(v). Due to this property, when computing walks, we
can compute a number of walks proportional to π(v) starting at each vertex v. This allows us to stitch
together many short walks, achieving an efficient random walk algorithm.

For undirected graphs, it is known that the stationary distribution is given by π(v) = deg v
2m , where

m is the total number of edges and deg v is the degree of the vertex v. It turns out that the running
time of the algorithm ends up being inversely proportional to the minimum element of π. In this case,
the minimum element is at least 1

2m , so the running time is O(2m).
This works well for undirected graphs, since the stationary distribution π is both easy to compute

and nicely lower bounded. However, in the case of directed graphs, π can be difficult to compute and
have elements as low as O(1/2n). Thus, something else will be needed for directed graphs.

6 Part II: PageRank in directed graphs

First we will define the PageRank problem. PageRank concerns a walking process which traverses to a
random neighbor with probability 1−ε, and goes to a random neighbor with probability ε. This problem
is useful for internet search algorithms. Formally, if P is the walk matrix, then the transition matrix of
the PageRank algorithm is given by

T = (1 − ε)P +
ε

n
11T .

PageRank has the property that the stationary distribution satisfies π(v) ≥ ε/n, which will enable us to
use a similar idea again.

It is a theorem of Breyer that PageRank can be approximated by running O(log n) random walks of
length O((log n)/ε) from each vertex. Because of this, undirected PageRank is easy due to the results
of the previous section.

What about directed graphs? Our strategy for directed graphs will be to continuously transform an
undirected graph GU to a directed graph GD. We will do this in steps, letting

Gj =

(
1 − j

log log n

)
GU +

j

log log n
GD,

and transforming a PageRank on Gj to Gj+1 in steps.
We will design an algorithm that takes a walk w in Gj as input, and which outputs a walk in Gj+1

or “fail,” in a manner such that conditioned on not failing, the algorithm outputs a uniformly random
walk in Gj+1.

One possible way to do this is to perform rejection sampling: for each edge in the walk, if it comes
from GU (rather than from GD), then we reject the walk with probability 1/(j+ 1). This does yield the
desired distribution on output, and works most of the time when j is large. However, when j is small,
this rejects far too often, and as a result we are not able to obtain a walk from Gj+1 fast enough. In
particular, the j = 0 case is especially bad: every walk has probability 0 of being accepted.

So, the problem remains how to do this walk conversion for small j. We will use the conversion from
G0 to G1 as an example to illustrate the method used. The idea will be to pretend that an edge in GU

is actually in GD. Suppose that we are in the case where each vertex is approximately balanced, i.e.,
has roughly equal in- and out-degrees. Then, there is a chance we get “lucky”: when we want to pick an
edge from GD, the edge that we picked from GU has roughly a 1/2 chance of going in the right direction.
Using this rough idea, we are able to go from G0 to G1 when the graph is roughly balanced.

If on the other hand the graph is not balanced, things may go wrong. In the worst case there might
be a vertex with in-degree n− 1 and out-degree 1, and when leaving that vertex there will only be a 1/n
chance of picking the right edge when walking in GU . To deal with this, we will transform the graph.

2



For such a vertex, we will transform it into a series of log n vertices, so that all the edges that previously
entered v now enter v0, and there are n/2 parallel edges from v0 to v1, n/4 parallel edges from v1 to
v2, and so on, with the edge that formerly left v now leaving vlogn instead. We may similarly do such a
transformation on every vertex. In doing so, each vertex will become approximately balanced, with at
least 1/3 of its edges leaving the vertex.

There are some more details to this algorithm which have been omitted, and it turns out that the ε
in the PageRank will be necessary for this to work.

7 Part III: Random walks in directed graphs

Finally, the PageRank algorithm will allow us to obtain random walks in directed graphs. In particular,
we can just use ε = O(1/L), so that the walk is a true random walk with constant probability.

3


