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1 Outline

In this lecture, we continue the discussion of the approximate average degree problem described in lecture
2. The lecture is split into three parts.

1. Recap

2. A (2 + ε)-multiplicative approximation algorithm

3. A (1 + ε)-multiplicative approximation algorithm

2 Estimating the average degree of a graph

2.1 Recap

In lecture 2, we introduced the problem of estimating the average degree of a graph in sublinear time.

2.1.1 Problem statement

Recall that we are given a graph G = (V,E) with d(u) for u ∈ V being the degree of node u. Let n = |V |
and m = |E|. Our goal is to estimate the average degree of G, defined as follows.

Definition 1 (Average Degree) The average degree of a graph G = (V,E) is defined as

d̄ =

∑
u∈V d(u)

n
.

For this problem, we assume that G is stored as an adjacency list with an additional degree array
mapping nodes u ∈ V to their degrees d(u). Because of this representation, we have access to both
neighbor and degree queries in constant time.

Definition 2 (Neighbor Query) A neighbor query nbr(u, j) returns the jth neighbor of u for a node
u ∈ V .

(Note that in order for these queries to run in constant time, the entries of the adjacency list would need
to be implemented as arrays rather than linked lists.)

Definition 3 (Degree Query) A degree query d(u) returns the degree of u for a node u ∈ V .

We will also make two key assumptions in order to simplify the problem. We assume (1) that G is
simple (has no parallel edges or self loops) and (2) that m = Ω(n) (G is not ultra-sparse). Recall from
last lecture that if we do not make the second assumption, than we have no hope of providing a constant
multiplicative approximation in sublinear time as linear time is needed to distinguish between the cases
where m = 0 and m = 1.
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2.1.2 First attempt at an algorithm

At the end of lecture 2, we introduced a first idea for an algorithm for estimating average degree. Recall
that the basic idea of taking a sample of nodes and using the sample mean degree as our estimate did
not work as, in order to apply Chernoff bounds, we would need to normalize our sample degrees which
could have high variance (they can take on any values in the range [0, n]). Therefore, we introduced the
idea of using bucketing : separately estimating nodes with different degrees.

Specifically, let β = ε
c and t = O( logn

ε ). Let the ith bucket be defined as

Bi = {v ∈ V |(1 + β)i−1 < d(v) ≤ (1 + β)i}

for i ∈ {0, 1, ..., t− 1}. (Note that we could make a separate bucket for degree zero nodes or just assume
there are none.)

Before we reiterate the algorithm, note a few useful observations Let dBi =
∑
v∈Bi

d(v) be the sum
of the degrees of all nodes in the ith bucket, and let dtotal =

∑
v∈V be the sum of the degrees of all

nodes in the graph. Following directly from the definition of Bi above,

(1 + β)i−1|Bi| < dBi
≤ (1 + β)i|Bi|.

Therefore,
t−1∑
i=0

(1 + β)i−1|Bi| < dtotal ≤
t−1∑
i=0

(1 + β)i|Bi|.

Our first attempt at an algorithm uses this fact to estimate d̄ by separately estimating the sizes of each
of the buckets.

Algorithm 1 Bucketing

Take a sample S ⊂ V of nodes
for i ∈ {0, ..., t− 1} do

Si ← S ∩Bi
ρi ← |Si|

|S| . Estimating fraction of nodes in |Bi|
return

∑t−1
i=0 ρi(1 + β)i−1

Note that each ρi is an unbiased estimate of Bi. Let σ
(i)
j = 1 if sample j falls in bucket i and σ

(i)
j = 0

otherwise.

Exp[ρi] = Exp

[
|Si|
|S|

]
= Exp

 |S|∑
j=1

σ
(i)
j

|S|

 =
|S| ∗ |Bi|/n
|S|

=
|Bi|
n

Also note that assuming our estimates of the fractions ρi are good, then the estimate returned by
this algorithm is an undercounting as we use the lower bound of the bucket degrees (1 + β)i−1.

Observation 4 The key problem with this algorithm is that for i where |Si| is small, our estimates of
ρi will be bad approximations of the fraction of nodes that fall in bucket i.

We continue by exploring this problem and adapting our algorithm to mitigate it.

2.2 A (2 + ε)-multiplicative approximation algorithm

Consider the bipartite graph with three nodes on one side of the graph connected to the n − 3 nodes
on the other side of the graph. Let a be the index of the bucket that contains the n − 3 nodes with
degree 3 and let b be the index of the bucket that contains the three nodes with degree n− 3. Though
|Ba| = n− 3 and |Bb| = 3, both buckets contribute (n− 3) ∗ 3 edges to dtotal.
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However, under Algorithm 1 we will likely never see any nodes in Bb in our sample if we have o(n)
samples, leading to an underestimate of the average degree by a factor of two. In the unlikely case where
we do see a node in Bb, we will likely greatly overestimate the average degree. More generally, when
there are small buckets (small in terms of their cardinality) with large degrees, our estimate will have
high variance because our estimate of ρi for a small bucket Bi will have high variance and changes in ρi
will have a large impact on our estimate of d̄.

The key idea for our second attempt at an algorithm will be to ignore small buckets in our estimate
in order to reduce the variance of our estimate. (Importantly, note that whether a bucket is considered
small or large depends on our sample and therefore these classifications may change on different runs of
the algorithm.)

Algorithm 2 Ignore small buckets

Take a sample S ⊂ V of nodes
for i ∈ {0, ..., t− 1} do

Si ← S ∩Bi
if |Si| ≥

√
ε
n ∗

|S|
c∗t then . Si big

ρi ← |Si|
|S| . Estimating fraction of nodes in |Bi| (same as before)

else . Si small
ρi ← 0 . Ignoring small buckets

return
∑t−1
i=0 ρi(1 + β)i−1

Intuitively, the reason we set this threshold of
√

ε
n ∗

|S|
c∗t is related to the

√
n clique example from

last lecture. Recall that such cliques can affect the average degree by an additive constant. Therefore,
any buckets that appear approximately 1√

n
fraction of the time cannot be ignored if we wish to get a

constant multiplicative approximation. Additionally, it is important that small buckets can be safely
ignored without incurring much additional error. As we will show later, the choice of this threshold
means that small buckets contribute O(εn) edges, so we can ignore them and maintain reasonable
approximation error.

2.2.1 Picking |S|

So far, we have not addressed |S|, i.e. the size of our sample. Consider

|S| = Θ(
√
n ∗ polylog(n) ∗ poly(

1

ε
)).

(Note that one of the log(n) factors and one of the 1
ε factors comes from our choice of t = O( logn

ε )
buckets.)

This choice of |S| implies that if our algorithm classifies Si as big, then

|Si| ≥
√
ε

n
∗ |S|
c ∗ t

≥ Ω(polylog(n) ∗ poly(
1

ε
)).

From this, we will assume that with high probability for all i where Si is classified as big, our approxi-
mation of the fraction of nodes in bucket Bi is good:

(1− γ)
|Bi|
n
≤ ρi ≤ (1 + γ)

|Bi|
n
.

(This follows from applying Chernoff and union bounds.)
Intuitively, we choose this setting of |S| in order to collect enough samples to accurately estimate the

size of big buckets. The
√
n dependence is necessary to guarantee that we will see buckets that appear
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a 1√
n

fraction of the time. In order to apply the union bound for the claim above, we need to show that

for each big bucket, the probability of having a ”bad” estimate is at most o( 1
t ) = o( ε

logn ). The choice of

|S| gives us the Ω(polylog(n) ∗ poly( 1
ε )) samples per large bucket which allows us to comfortably apply

Chernoff bounds to limit the failure probability to at most o( ε
logn ) (an additional O( 1

ε ) factor also comes

from the Chernoff bound as we will later need γ < ε).

2.2.2 Analysis

We will split our analysis into two steps: first showing that the output cannot be too large (overestima-
tion) and then that the output cannot be too small (underestimation).

1. Can our estimate be too large?

First, consider the idealistic case where all of our estimates ρi are perfect, i.e. ρi = |Bi|
n . Then, our

estimate cannot be too large:

t−1∑
i=0

ρi(1 + β)i−1 =
1

n

t−1∑
i=0

|Bi|(1 + β)i−1 ≤ d̄.

Realistically, we can assume that ρi ≤ (1 + γ) |Bi|
n . For large buckets, this assumption comes from

our choice of |S| and for small buckets this is true as ρi = 0. Then, our estimate still cannot be
that large:

t−1∑
i=0

ρi(1 + β)i−1 ≤ 1

n

t−1∑
i=0

(1 + γ)|Bi|(1 + β)i−1 ≤ (1 + γ)d̄.

2. Can our estimate be too small?

In the idealistic case where all of our estimates ρi are perfect, then

t−1∑
i=0

ρi(1 + β)i−1 =
1

n

t−1∑
i=0

|Bi|(1 + β)i−1 ≥ 1

n

t−1∑
i=0

|Bi|(1 + β)i(1− β) ≥ (1− β)d̄.

(As (1− β)(1 + β) ≤ 1)

In the realistic case, we can assume that for big buckets, ρi ≥ (1 − γ) |Bi|
n from our choice of |S|.

However, for small buckets, we do not count them at all in our estimate and therefore they could
raise an issue in terms of undercounting.

In order to quantify how much error we can suffer by ignoring small buckets, it will be useful to
classify all edges of the graph into three categories.

1. big-big

Big-big edges are edges where both endpoints belong to large buckets. In our algorithm, these
edges are counted from both sides.

2. big-small

Big-small edges are edges where one endpoint belongs to a large bucket and the other to a small
bucket. Our algorithm only counts these edges once in the average degree estimate.

3. small-small

Small-small edges are edges where both endpoints belong to small buckets. Our algorithm never
counts these edges.
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As shown above, for large buckets and therefore for big-big edges, error in our estimates of ρi will add
only small multiplicative error to our approximation. Undercounting of the big-small edges can add a
factor of two multiplicative error to our approximation. We will proceed by showing that undercounting
of the small-small edges will only add small multiplicative error.

Consider a bucket where |Bi| > 2
√
εn
ct . Then, Exp [|Si|] = |S| ∗ |Bi|

n > 2 ∗
√

ε
n ∗

|S|
c∗t . As the expected

size of Si is twice the threshold for being classified as a big bucket, with high probability, Si will be
big (by Chernoff bound). Therefore, by union bound we can assume that for all small buckets Bi,

|Bi| ≤ 2
√
εn
ct . So, at most there can be t ∗ 2

√
εn
ct nodes in small buckets and the number of small-small

edges is at most (
t ∗ 2

√
εn

ct

)2

= O(εn).

As we assume that G is not ultra-sparse (d̂ ≥ 1), this εn additive error corresponds to a multiplicative
error of at most (1 + ε).

Combining the cases of our error analysis, we get the following claim on our algorithm.

Claim 5 Algorithm 2 gives a (2 + ε)-multiplicative approximation algorithm.

2.3 A (1 + ε)-multiplicative approximation algorithm

In this section we will try to reduce the error in estimating big-small edges to get a better approximation
factor. As we are already counting both sides of the big-big edges and never see either endpoint of the
small-small edges, this is the obvious area for improvement. Specifically, as we never see the small side
of big-small edges, we will double count them from the big side.

Observation 6 Note that in both algorithms presented so far, we have only made use of degree queries
and have not made use of neighbor queries.

First, let’s introduce a new type of query (that can be implemented simply using existing queries).

Definition 7 Random Neighbor Query A random neighbor query randnbr(v) returns a random neighbor
of v for any node v ∈ V .

We can implement random neighbor queries by the following.

1. Run the degree query d(v)

2. Pick a random index j ∈ {1, ..., d(v)}

3. Return the neighbor query nbr(v, j)

We will use this new query to sample an (almost) random edge from a given bucket Bi.

1. Sample nodes until we fall into Bi, call this node v

2. Return the random neighbor query randnbr(v)

If all nodes in Bi had the same degree, this would correspond to sampling a random edge from Bi.
However, as the nodes in Bi can have slightly different degrees (by a factor of (1 + β)), the sampling
distribution is not quite uniform over all edges in Bi (edges of lower degree nodes are more likely to be
sampled). As this difference is slight, we will assume that edges are randomly sampled.

Now, we will use this protocol to estimate the fraction of edges in a big bucket Bi that are big-small
edges.

• For j = {1, ..., O( 1
δ )}
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1. Pick a random edge e in Bi

2. Set aj = 1 if e is a big-small edge and aj = 0 otherwise

• Output αi = average aj

In terms of implementation, let’s assume that this protocol is run after enough samples are taken
to determine which buckets are big and which are small. Then, determining if a given edge e = (u, v)
where u ∈ Bi is a big-small edge can simply be done by taking the degree query d(v) to figure out which
bucket v belongs to.

To analyze how good of an estimate αi is for the fraction of big-small edges in Bi, first consider the
idealized case where all nodes in Bi have the same degree d. Let Ti be the number of big-small edges in
Bi. From our protocol for picking random edges,

Pr [A specific edge e in Bi is chosen] =
1

|Bi|
∗ 1

d
.

Then,

Exp[aj ] =
Ti

|Bi| ∗ d
.

In the general case where the nodes in Bi can have slightly different degrees, we can limit the expected
value of aj to a small range:

Ti
|Bi| ∗ (1 + β)i

≤ Exp[aj ] ≤
Ti

|Bi| ∗ (1 + β)i−1
.

Now, we have the tools to present our final algorithm, where we use these estimates for the fraction
of big-small edges in a big bucket Bi to double count those edges.

Algorithm 3 Double count big-small edges

Take a sample S ⊂ V of nodes
for i ∈ {0, ..., t− 1} do

Si ← S ∩Bi
if |Si| ≥

√
ε
n ∗

|S|
c∗t then . Si big

ρi ← |Si|
|S|

for all v ∈ Si do
Pick a random neighbor of v, u← randnbr(v)
X(v) = 1 if u belongs to a small bucket, X(v) = 0 otherwise

αi ← |v∈Si|X(v)=1|
|Si| . Estimate of the number of edges in Bi that are big-small edges

else . Si small
ρi ← 0

return
∑t−1
i=0 ρi(1 + αi)(1 + β)i−1 . (1 + αi) factor double counting the big-small edges

The approximation error of this algorithm comes from three factors: error in estimating the ρi’s,
error in estimating the αi’s, and ignoring the small-small edges. The errors in estimating the ρi’s and
αi’s result in multiplicative error while ignoring the small-small edges results in additive error on the
order of εn (which can be rewritten as multiplicative error as G is not ultra-sparse).

In combination, this algorithm gives an (1 + ε)-multiplicative approximation for average degree.
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