1. Testing the monotonicity of a list – the case of bits:

Given a Boolean function $f : [n] \to \{0, 1\}$ and parameter $\epsilon \in (0, 1)$, present an algorithm that makes $\frac{1}{\text{poly}(\epsilon)}$ queries to f, and has the following behavior:

- If f is monotone, then the algorithm always outputs “pass.”
- If f is ϵ-far from monotone, then the algorithm outputs “fail” with probability at least $3/4$.

Here by “ϵ-far from monotone” we mean that the value of f need only be changed on at most ϵn inputs in order to make it monotone.

2. Removing adaptivity:

Assume that your computational model is such that a query returns a single bit. In such a model, show that any algorithm making q queries can be made into a nonadaptive (i.e., where the queries do not depend on the results of any previous queries) tester that uses only 2^q queries.

3. Removing adaptivity for property testing dense graphs:

We define a graph property to be a property that is preserved under graph isomorphism (i.e., if Π is a graph property, then for any isomorphic graphs G and G', G has property Π if and only if G' has property Π).

Show that any adaptive algorithm for testing a given graph property which makes q queries can be made into a nonadaptive algorithm for testing the same graph property using only $O(q^2)$ queries.

Hint 1: Prove that a q-query tester can be turned into a $O(q^2)$-query tester which tests all edges of some (possibly adaptively chosen) induced subgraph of the input graph G.

Hint 2: Instead of running a tester on the original graph G, what would happen if you ran the tester on some isomorphic copy of G?

Hint 3: Your nonadaptive algorithm is allowed to be randomized.

4. Property testing of the clusterability of a set of points:

Let X be a set of points in an arbitrary metric space. Assume that one can compute the distance between any pair of points in one step. Say that X is (k, b)-diameter clusterable if X can be partitioned into k subsets, which we call “clusters,” such that the maximum distance between any pair of points in a cluster is b. Say that X is ϵ-far from (k, b)-diameter clusterable if at least $\epsilon |X|$ points must be deleted from X in order to make it (k, b)-diameter clusterable.
Show how to distinguish the case where X is (k, b)-diameter clusterable from the case where X is ϵ-far from $(k, 2b)$-diameter clusterable. Your algorithm should use poly$(k, 1/\epsilon)$ queries. Note that it is possible to get an algorithm which uses $O((k^2 \log k)/\epsilon)$ queries.