Lecture 11:

Lower bounds via Yao's method
How to prove lower bounds?

Big difficulty: Property testing algorithms are randomized

how do you argue about their behavior?

Useful tool for lower bounding randomized algorithms:

Yao's Principle

If there is probability distribution D
on union of "positive" ("yes"/"pass") + "negative" ("no"/"fail") inputs, s.t. any deterministic algorithm
of query complexity $\leq t$ outputs in correct
answer with prob $\geq \frac{1}{3}$ for inputs chosen according to D,
then t is a lower bound on the randomized
query complexity.

moral: average case deterministic lb. \Rightarrow
randomized worst case lb.
Why?

Proof omitted

Game theoretic view:

Alice selects deterministic algorithm A; payoff = $\sum \text{cost of } A(x)

Bob selects input x

Von Neumann's minimax \Rightarrow Bob has randomized strategy which is as good when A randomized

An example:

$\begin{align*}
L_n = \{ & w \mid w \text{ is } n\text{-bit string} \} \\
& w = v^R w w^R.
\end{align*}$

w is concatenation of palindromes

Note: testing is w is ε-close to a palindrome, i.e. $w = v^R v$

can be done with $O(\frac{1}{\varepsilon})$ queries

$\defn w$ is "ε-close to $L_n" \iff \exists w \in L_n

s.t. w + w^R$ differ on $\leq \varepsilon n$ characters

(this is different from edit distance)

Thm: if A satisfies

$\forall x \in L_n, \Pr[A(x) = \text{Pass}] \geq 2/3$

$\forall x, \varepsilon$-far from $L_n, \Pr[A(x) = \text{Fail}] \geq 2/3$

then A makes $\Omega(\varepsilon n)$ queries
Proof:

Plan: give distribution on inputs that is hard for alldet. algs with \(o(\sqrt{n}) \) queries, then \(\text{ Yao } \Rightarrow \text{ randomized 1.6 of } \Omega(\sqrt{n}) \)

- w.l.o.g. assume \(b/n \)
- distribution on negative inputs:
 - \(N \) = random string of distance \(\geq 2n \) from \(L_n \)
- distribution on positive inputs:
 \[
 P = \begin{cases}
 1. \text{ pick } k \in_R \left[\frac{n}{b+1}, \frac{n}{3} \right] \\
 2. \text{ pick random } v, u \text{ s.t. } \\
 \quad |v| = k \\
 \quad |w| = n - 2k \\
 3. \text{ output } vv^k uu^k \\
 \end{cases}
 \]

- distribution \(D \):
 - flip coin
 - if \(H \) output according to \(N \)
 - else \(" \) output according to \(P \)
Assume deterministic algorithm A uses $\leq t = o(\sqrt{n})$ queries.

Query Tree

- **Location l_0**
 - **Location l_{00}**
 - **Location l_{000}**
 - **Outputs**: P, N, P (indicates yes, no, yes)
 - **Paths** labeled with inputs reaching the root.
 - **Depth t**
 - **2^t root-leaf paths**
 - **WLOG, all leaves have depth t**

NOTE: we can calculate probability of reaching leaf w since we know input distribution.

Error of leaf:

- $E^-(x) = \sum_{w \in \{0,1\}^n} |w|$ if x is far and w reaches leaf L.
- $E^+(x) = \sum_{w \in \{0,1\}^n} |w|$ if $x \in L$ and w reaches leaf L.

$E^-(x)$ should fail.
$E^+(x)$ should pass.
Total error of \(A \) on \(D \)

\[
= \sum_{\text{passing}} \Pr_{w \in D} [w \in E^{-}(l)] + \sum_{\text{failing}} \Pr_{w \in D} [w \in E^{+}(l)]
\]

Why is there a problem?

lots of inputs from \(N + P \) end up at all leaves.

Claim 1: if \(t = o(n) \), \(\forall l \) at depth \(t \)

\[
\Pr_{D} [w \in E^{-}(l)] \leq (\frac{1}{2} - o(1)) \cdot 2^{-t}
\]

Claim 2: if \(t = o(\sqrt{n}) \), \(\forall l \) at depth \(t \)

\[
\Pr_{D} [w \in E^{+}(l)] \geq (\frac{1}{2} - o(1)) \cdot 2^{-t}
\]

So error of \(A \) on \(D \)

\[
= \sum_{\text{passing}} \frac{1}{2} - o(1) \cdot 2^{-t} + \sum_{\text{failing}} \frac{1}{2} - o(1) \cdot 2^{-t} \geq \frac{1}{2} - o(1) \geq \frac{1}{3}
\]

still need to prove the claims...
Proof of Claim 1:

Idea: N is close to U.

U would end up uniformly distributed at each leaf.

$$\Rightarrow P_{u \in U} \left[w \in E^{-t}(U) \right] = \frac{2^{n-t}}{2^n} = 2^{-t}$$

How much can distribution change by using N instead of U?

$$|L_n| \leq 2^\frac{n}{2} \cdot \frac{n}{2}$$

Choice of u,v

words at dist $\leq \varepsilon$ from L_n:

$$\leq 2^\frac{n}{2} \cdot \frac{n}{2} \cdot \sum_{i=0}^{\frac{n}{2}} \binom{n}{i} \leq 2^\frac{n}{2} + 2\varepsilon \log(2)n$$

So,

$$E^{-t}(U) \geq 2^{n-t} - 2^\frac{n}{2} + 2\varepsilon \log(2)n = (1 - o(1))2^{n-t}$$

strings in U that reach l

words at dist $\leq \varepsilon$

Assume $\varepsilon < \frac{1}{8}$

$t = o(n)$

So 1^{st} term swamps 2^{nd} term!

So,

$$Pr_{D} \left[w \in E^{-t}(U) \right] \geq \frac{1}{2} \cdot Pr_{N} \left[w \in E^{-t}(U) \right]$$

$$\geq \frac{1}{2} \cdot \frac{|E^{-t}(U)|}{2^n} \geq (\frac{1}{2} - o(1))2^{-t}$$
Proof of Claim 2

Will show: For every fixed set of $o(n^2)$ queries, lots of strings in L_n follow that path.

Count # strings agreeing with t queries of leaf?

$= 2^{n-t}$

Count # strings in L_n agreeing with t queries of leaf?

$\geq 2^{n-t} - ?$

Main difficulty:

Fix $k=10$

should see same value at locns:

$1, 10$
$2, 9$
$3, 8$
$4, 7$
$5, 6$
n, n
$12, n-1$
\vdots

maybe no string in L_n follows path?

that's why k is picked randomly in $\left[\frac{n}{6}, \frac{n}{3} \right]$!

not all queries can be bad
Given leaf l, let Q_l be indices queried along the way.

For each of $(\frac{t}{2})$ pairs of queries $q_1, q_2 \in Q_l$ at most 2 choices of k for which q_1, q_2 is symmetric to k or $\frac{n}{2} + k$ need to pick $k = \frac{q_1 + q_2}{2}$ only 1 choice in this case!

\Rightarrow # choices of k s.t. no pair in Q_l
Symmetric around k or $\frac{n}{2} + k$ is

$\geq \frac{n}{b} - 2t(\frac{t}{2}) = (1 - o(1)) \left(\frac{n}{b}\right)$

For these good k, # strings that follow path $= 2^{\frac{n}{b} - t}$

So $Pr_p[\omega \in E^+(l)] = \sum_w \sum_k Pr_p[w | k] \cdot Pr[\text{choose } k] \cdot Pr_\omega[\omega \in E^+(l)]$

$\geq \frac{1}{(\frac{n}{b})^{1/2}} \left[(1 - o(1)) \frac{n}{b} \right] \cdot 2^t = (1 - o(1)) \cdot 2^t$

$\Rightarrow Pr_\omega[\omega \in E^+(l)] = \left(\frac{1}{b} - o(1)\right) 2^t$