Lecture 4:

Distributed Algorithms vs. Sublinear Time Algorithms
- Vertex Cover

Simulating Greedy Algorithms in Sublinear time
- maximal matching
Distributed Algorithms vs. sublinear time algorithms on SPARSE graphs

max deg ≤ d

Again, sparse graphs: max degree d, adj list representation

A problem to solve:

Vertex Cover

V' ∈ V is "Vertex Cover" (VC) if ∀ (u, v) ∈ E either u ∈ V' or v ∈ V'

VC Question: What is min size of VC?

Note: in deg ≤ d graph, |VC| ≥ m/d since each node can cover ∈ d edges

(VC is NP-complete but there is a polytime 2-multiplicative approximation)

Can you approximate VC in sublinear time?

multiples?

graph with no edges |VC| = 0 => can't distinguish these cases in sublinear time

graph with 1 edge |VC| = 1

additive? hard! need some multiplicative error too; computationally hard to approximate better than 1.36 factor (maybe even 2)

Combination?
def: \hat{y} is (c, ε)-approximation of solution value y for minimization problem if

$$y \leq \hat{y} \leq cy + \varepsilon$$

allows multiplicative and additive error

(Analogous definition for maximization problems)

Some Background on Distributed Algorithms

- **Network**
 - processors \(\geq \) max degree \(d\) known to all
 - links

- **Communication round**
 - nodes perform computation on input bits, history of received msgs, random bits
 - nodes send messages to neighbors
 - nodes receive messages from neighbors

def. Vertex Cover problem for distributed networks: not some other graph

- Network graph = input graph (i.e., network computes on itself)
- At end, each node knows if in or out of VC (doesn't know about others necessarily)

Main insight on why fast distributed \(\iff\) sublinear time: in kround algorithm, output of node \(v\) only depends on nodes at distance at most \(k\) from \(v\). At most \(d^k\) of these!
Can simulate V's view of distributed computation in $\leq d^k$ time. Figure out if v is in or out of VC.

Comment: if algorithm is randomized, v needs to know random bits (or be able to construct) of all d^k neighbors. k must be constant.

Fast distributed alg \Rightarrow "oracle" which tells you if v is in VC.

But are there fast VC distributed algorithms?

Yes, will see some soon. Often called "local distributed algorithms."

How do you use this to approximate VC in sublinear time?

Parnas-Ron framework:

Sample nodes of graph V_1, \ldots, V_r

For each V_i, simulate distributed algorithm to see if $V_i \in VC$.

Output $\#V_i's$ in VC/

Runtime $O(r \cdot d^{k+1}) \approx O(\Delta^2 \cdot d^k)$ (where $k =$ # rounds of distributed alg, $\Delta =$ max degree of network).

Proof of correctness: Chernoff/Hoeffding bounds.
Simulating v's view of a k-round distributed computation:

Round 0:
- Each node sends msg based on input & random bits.
- Each node gets msg from each nbr, which is based on their input, random bit.

Round 1:
- Each node sends msg based on \exists input, random bits, ed nbrs & what they saw for input/random bit.
- Each node gets msg based on nbrs info up to round 1.

Round 2:
- Each node sends msg based info of self & nbrs.
- Each node receives msg based on nbrs & nbrs of nbrs.
Fast distributed algorithm for VC:

\[i = 1 \]

While edges remain:
- remove vertices of degree \(\geq d/2^i \) and adjacent edges
- update degrees of remaining nodes
- increment \(i \)

Output all removed nodes as VC

Rounds: \(\log d \)

Example:

\(d = 8 \)

Is it a VC?
- no edges remain at end
- all removed along with some adjacent vertex

\(\text{dist}(\vec{e}) \)
Is it a good approximation?

Let \(\Theta \) be any \(\min VC \) of graph

Thm \[|\Theta| \leq \text{output} \leq (2\log d + 1) |\Theta| \]

since \(\text{output is VC} \) to prove

Proof

Claim: each iteration adds \(\leq 2|\Theta| \) new nodes to output VC

Why?

Observation: at \(i \)th iteration

1) all nodes in graph have degree \(\leq \frac{d}{2^i} \)

2) all removed nodes have degree \(\geq \frac{d}{2^i} \)

\(\frac{d}{2^{i+1}} \leq \text{degree} \leq \frac{d}{2^i} \)

Let \(X \) be removed at iteration \(i \) but not in \(\Theta \)

note all edges touching \(X \) must also touch \(\Theta \) at other end

why? \(\Theta \) is a VC.

\(\Theta \) not removed

Not removed yet

Removed nodes

\(\Theta \) removed at iteration \(j \)

\(\Theta \setminus \Theta \) removed at iteration \(j \)
edges touching X:

\[\approx \frac{d}{2^i} \cdot |X| \quad \text{since } \deg \geq \frac{1}{2^i} \]

\[\leq \frac{d}{2^{i-1}} |\Theta| \quad \text{since each edge has endpt in } \Theta \]

\[+ \quad \text{each node in } \Theta \quad \text{has } \deg \leq \frac{d}{2^{i-1}} \]

\[\Rightarrow \quad \frac{d}{2^i} |X| \leq \frac{d}{2^{i-1}} |\Theta| \]

\[\Rightarrow \quad |X| \leq 2|\Theta| \]

\[\text{end pf of claim} \]

since \leq \log d \quad \text{rounds,}

\[\text{output } \leq |\Theta| + (2\log d) |\Theta| = (2\log d + 1) |\Theta| \]

\[\text{end pf of claim} \]

Gives \(O(\log d, \epsilon) \)-approx in \(d \log d \) queries.

Can get \(2\epsilon \)-approx in \(d \log d / \epsilon \) queries.
Sublinear Time Approximation Algorithms:

Estimating size of maximal matching in degree bounded graph

Why?

- Relation to Vertex Cover
 - $VC \geq MM$ \(\Leftarrow\) for each edge in matching, at least one end node must be in VC (these are disjoint)
 - $VC \leq 2MM$ \(\Leftarrow\) put all MA nodes in VC
 - if an edge not covered, then violates maximality

- A step towards approximating maximum matching

Note: if $\deg u \geq d$, maximal matching $\geq \frac{n}{d}$ \(\Leftarrow\) to see this, run greedy algorithm

Greedy Sequential Matching Algorithm:

1. $M \leftarrow \emptyset$
2. $\forall e = (u,v) \in E$
 - if neither u or v matched, add e to M

Output M

Observe:

- M maximal, since if $e \notin M$ either u or v already matched earlier
Oracle Reduction Framework

- Assume given deterministic "oracle" \(O(e) \)
- which tells you if \(e \in M \) or not in one step

\[s = \frac{p}{2^a} \]
- \(s \) nodes chosen iid

\[\forall v \in S \]
- \(\chi_v = \begin{cases} 1 & \text{if any call to } O(y_w) \text{ for } w \in N(v) \text{ returns "yes" } \\ 0 & \text{o.w.} \end{cases} \]

- Output \(\frac{n}{2^a} \sum_{v \in S} \chi_v + \frac{\varepsilon}{2^a} \cdot n \)
- makes an underestimate unlikely

Since 2 nodes matched for each edge in \(M \)

Behavior of output: Why does it work?

\[|M| = \frac{1}{2} \sum_{v \in V} \chi_v \]

\[E[|\text{output}|] = E\left[\frac{n}{2^a} \sum_{v \in S} \chi_v \right] + \frac{\varepsilon}{2^a} \cdot n \]

\[= \frac{n}{2^a} \cdot s \cdot \frac{2|M|}{n} + \frac{\varepsilon}{2^a} \cdot n = |M| + \frac{\varepsilon}{2^a} \cdot n \]

\[P_r \left[\left| \frac{n}{2^a} \sum_{v \in S} \chi_v + \frac{\varepsilon}{2^a} \right| \geq \frac{\varepsilon}{2^a} \cdot n \right] \leq \frac{1}{3} \] by Chernoff-Hoeffding
Implementing the oracle:

Main idea: figure out "what would greedy do on (v,w)?"

Problem: Greedy is "sequential". Can have long dependency chains.

Example:

How to implement oracle based on greedy?

To decide if e in matching,
- need to know decisions for adjacent edges that came before e in ordering
- do not need to know anything about any edge that comes after e in ordering since not considered by greedy algorithm before e

So, if any adjacent before e in ordering matched:
- e is not matched
otherwise e is matched
How to break length of dependency chains?

assign random ordering to edges

Example

Is edge 5 in M?

* Recurse on .3
 * Recurse on .1
 * No other adjacent edges to .1
 * Therefore .3 is not matched

* No need to recurse on .7 since .5 < .7

* Don't know yet about .5, so recurse on .4
 * Recurse on .2
 * .8 comes after .2 in order so doesn't affect Greedy's behavior
 * Same for .4 so .2 is matched
 * .4 is not matched

* .5 is matched
Implementation of oracle: assume ranks r_e assign to each edge e

to check if $e \in M$:

1. $\forall e'$ neighboring e, $r_{e'} < r_e$, recursively check $e' +$

2. if $e' \in M$, return "$e \notin M"$ and halt

else continue

return "$e \in M"

↑ since no e' of lower rank than e
is in M

Correctness: follows from correctness of greedy

Query complexity:

Claim expected # queries to graph per
oracles query is $2^{O(d)}$

Claim \Rightarrow total query complexity is $\frac{2^{O(d)}}{\varepsilon^2}$
Pf of Claim

- Consider QueryTree where root node labelled by original query edge, children of each node are edges adjacent to it.

- Will only query paths that are monotone decreasing in rank.

\[P \left[\text{given path of length } k \text{ explored} \right] = \frac{1}{(k+1)!} \]

- # edges in original graph at dist \(k \) in tree \(\leq d^k \)

- \(E \left[\text{edges explored at dist } k \right] \leq \frac{d^k}{(k+1)!} \)

- \(E \left[\text{total # edges explored} \right] \leq \sum_{k=0}^{\infty} \frac{d^k}{(k+1)!} \leq \frac{e^d}{d} \)

- \(E \left[\text{query complexity} \right] \leq d \cdot \frac{e^d}{d} = e^d = 2^{O(d)} \)