
Your Name September 10, 2024

6.5240 Problem Set 1

Collaborators: Firstname Lastname Due date: September 18, 2024

Homework guidelines: You may work with other students, as long as (1) they have not
yet solved the problem, (2) you write down the names of all other students with which you
discussed the problem, and (3) you write up the solution on your own. No points will be
deducted, no matter how many people you talk to, as long as you are honest. If you already
knew the answer to one of the problems (call these “famous” problems), then let us know
that in your solution writeup – it will not affect your score, but will help us in the future.
It’s ok to look up famous sums and inequalities that help you to solve the problem, but don’t
look up an entire solution.

1. Estimating average degrees via empirical sampling: In this exercise, you will
compute the expectation and bound the variance of the following algorithm for esti-
mating the average degree d(G) of a graph G, and you will show that these quantities
alone are not enough to show a sublinear bound on the query complexity.

Empirical Average via Vertex Sampling

Require: Query access to unknown graph G, number of vertices n, parameter k
1 Take k uniformly random vertices v1, . . . , vk
2 Make k degree queries to get their degrees d1, . . . , dk
3 Return the empirical average d̂ := 1

k

∑k
i=1 di

a) Show that Var
[
d̂
]
≤ 1

nk

∑
v∈V d2v.

b) Deduce that, to get a 2-approximation with probability ≥ 9/10, it would suffice
to have

k ≥ 40n ·
∑

v∈V d2v
(
∑

v∈V dv)2

c) Show that, for every connected graph G,∑
v∈V d2v

(
∑

v∈V dv)2
≤ 1

2

Conclude that taking k ≥ 20n is enough.

d) Unfortunately, this is a number of samples that is linear in n, while we are hoping
for much smaller (O(

√
n)). One way to achieve this would be to show that:∑

v∈V d2v
(
∑

v∈V dv)2
≤ O(1/

√
n).

1



Your Name 6.5240 Problem Set 1

Unfortunately, this is not true in general: show that for every n ≥ 2, there exists
a connected graph G on n vertices such that, for this graph,

∑
v∈V d2v = Ω(n2)

and
∑

v∈V dv = O(n), and so ∑
v∈V d2v

(
∑

v∈V dv)2
= Ω(1)

(Hint: we have discussed this graph in class.)

2. A simple algorithm for 2-approximation: This problem shows how to analyse our
algorithm in Problem 1 better, going beyond a naive expectation/variance argument.
Let β ∈ (0, 1) be a constant. Given a connected graph G with n ≥ 2 vertices and m
edges, we say a vertex v ∈ V is light if dv <

√
m/β, and heavy otherwise. Similarly,

an edge is heavy if both its endpoints are heavy, light if both are light, and medium
otherwise.

a) Show that there are at most 2
√
βm heavy vertices.

b) Deduce that there are at most 2βm heavy edges.

c) Letting mL be the number of light edges and mM the number of medium edges,
show that ∑

v light

dv = 2mL +mM

d) Deduce from the above that
∑

v light dv ≥ (1− 2β)m, and that

1− 2β

2
· d(G) ≤ 1

n

∑
v light

dv ≤ d(G).

e) This suggests that it would be sufficient, to get a 2-estimate, to only consider the
light vertices. Of course, one issue is that given a vertex v, we cannot tell whether
it is a light vertex or not (since this would require checking if dv <

√
m/β, and

we don’t know m). But we can still use this for the analysis of our algorithm to
reduce the number of samples k needed.

Consider the following thought experiment: instead of defining

d̂ :=
1

k

k∑
i=1

di

we instead define

d̂L :=
1

k

k∑
i=1

di1[vi is light].

Show that 1−2β
2

· d(G) ≤ E
[
d̂L

]
≤ d(G).

2



Your Name 6.5240 Problem Set 1

f) Show that Var
[
d̂L

]
≤

√
m/β

k
· E

[
d̂L

]
.

g) Argue that d̂ ≥ d̂L (always), and that Pr[d̂ < t] ≤ Pr[d̂L < t] for all t.

h) Deduce that, for 0 ≤ β < 1/4,

Pr

[
d̂ <

(1− 2β)2d(G)

2

]
≤

√
m/β

kβ2E
[
d̂L

] ≤ 1

β5/2(1− 2β)
· n

k
√
m

≤ 2
√
2

β5/2
·
√
n

k

(Prove all 3 inequalities. The constants don’t matter much; don’t try to optimize
them.)

i) Show that Pr
[
d̂ > 2

1−2β
d(G)

]
≤ 1−2β

2
.

j) Conclude by showing that, for every ε ∈ (0, 1), there exists C = C(ε) and a
constant c > 0 such that the algorithm, run with parameter k ≥ C

√
n, returns a

(2 + ε)-estimate of d(G) with probability at least 1/2 + cε.

k) Briefly explain how to amplify the probability of success to 9/10.

3. Estimating the number of triangles: In this problem we will design and analyze
an algorithm for estimating the number of triangles in a graph, assuming access to
uniform edge samples in addition to the degree, pair, and uniform neighbor queries of
the general query model. Also assume that the number of edges m is known, as well
as a lower bound T̂ such that T̂ < T (G), where T (G) is the number of triangles in G.
Our final running time will be poly(1/ϵ, 1/T̂ ) · o(m3), thus a better lower bound T̂ on
the number of triangles will yield an improved running time.

a) Consider sampling an edge uniformly, then choosing one of its endpoints uni-
formly. For a vertex v, what is the probability that v is the chosen vertex, in
terms of dv?

b) Let heavy vertices be defined as those with degree at least
√
2m. Give a procedure

that uses O(1) queries and outputs a vertex u (or ⊥) as follows: if u is heavy,
then it is returned with probability 1/

√
2m. If u is light then it is returned with

0 probability.

c) Recall from lecture that every vertex has at most
√
2m outgoing neighbors (neigh-

bors with higher degree, with ties broken by vertex ID). Design a procedure for
sampling outgoing neighbors such that each outgoing neighbor is sampled with
probability 1/

√
2m. As in (b), the procedure may output ⊥. (Hint: consider

separately nodes of degree >
√
2m and nodes of degree ≤

√
2m.

d) Prove that we can assign each triangle to one of its edges such that each edge has
at most

√
2m assigned triangles. (Hint: consider ordering the vertices according

to degree).

3



Your Name 6.5240 Problem Set 1

e) Design an algorithm that samples each triangle with probability 1
m
√
2m

. As in (b)

and (c), the algorithm may output ⊥.

f) Design an algorithm that outputs an estimate t such that, with probability at
lesat 2/3, (1− ε)T (G) ≤ t ≤ (1 + ε)T (G).

4. A query lower bound for deterministic algorithms. Prove that any deterministic
algorithm for estimating the number of connected components to within an ϵ·n additive
factor in the adjacency list model requires Ω(n) time for some constant ϵ ∈ (0, 1).

More specifically, for any deterministic algorithm A that does not require Ω(n) time,
show that for infinitely many n, there are pairs of graphs (G,G′) (each over n vertices)
such that the number of connected components are very different (off by at least 2ϵn),
but A outputs the same answer on them.

4


