Lecture 1

Topics:

Intro to course e sec slides

· Approximating diameter of point set

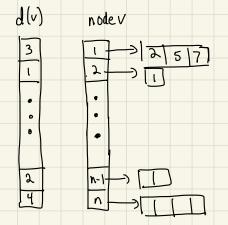
Sublinear time approximation

of average degree

Estimating the average degree of a graph

 $\frac{def}{de} f \quad Average \quad degree \quad \overline{d} = \frac{2}{u c v} \frac{deg(u)}{n} = \frac{2m}{n}$

Assume: G simple (no parallel edges, self-logos)



· degree queries · on v return deg(v)

 neighbor queries: on (vjj) teturn
 nbr of v jth

Estimating Average Degree

Given G = (V,E) $(f = (V_1 E))$ $E \in (0,1)$ approximation parameter $\delta \in (0,1)$ confidence E = 1 ets assume $\delta = Y_4$ Output \vec{d} st $\Pr[|\vec{d} - \vec{d}| \le \vec{d}] \ge |-S|$ where $\overline{d} = \frac{m}{n}$ (average degree)

Naive sampling. Pick O(??) sample nodes $V_1 \cdots V_s$ output are degree of sample: $\frac{1}{5} \geq \deg(v_i)$ Straight forward Chernoff/Hoeffding needs _R(n) simples lower bound? deg(i) degta) ••• deg(n) D 0 0 n-1 0 0 0 K need <u>M</u>(h) samples to find "needle in haystack" not a possible degree sequence is possible <u>n-l l l l l l l</u>

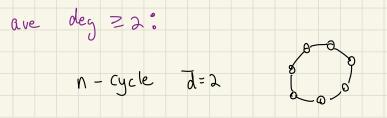
Some lower bounds:

"VITrasparse" case:

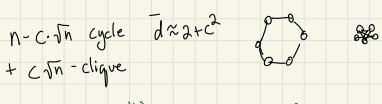
J edge 0 edges V5.

need _ ((n) queries to distinguish

=> multiplicative approx needs IL(n)



VS.



need <u>R(n^y2)</u> queries to Find Clique node

Warm up: regular graphs Assume each node has degree & Algorithm: output Δ Maybe this case is too case is too easy? Beter warmup: almost regular graphs Assume each node has degree in $[\Delta, 10\Delta]$ (so $\Delta \leq d \leq 10\Delta$) Algorithm' notation : $K \leftarrow \frac{50}{\epsilon^2} \ln \left(\frac{2}{8}\right)$ XEUD means pick For i e l to k do X Uniformly from set D · pick vi EuV · Xi = deg (vi) Output de the Zix

Runtime:
$$O(\frac{1}{2} \ln \frac{1}{8})$$
 no dependence
A or n
Behavior: What is the expected value of \mathcal{A} ?
Claim $E[\mathcal{A}] = \overline{\mathcal{A}}$ (The even without assumption)
PF
 $E[\mathcal{A}] = \frac{1}{k} \sum_{i=1}^{k} E[X_{i}] = E[X_{i}]$
 $\lim_{i \to 0} f_{i}$
 $\lim_{i \to 0} f_{i}$
 $\lim_{i \to 0} f_{i}$
 $\lim_{i \to 0} f_{i}$
 $\lim_{i \to 0} f_{i}$
How likely is $\overline{\mathcal{A}}$ (actual output) to be for from
its expected value?
Claim $R[[\overline{\mathcal{A}} - \overline{\mathcal{A}}] \leq \epsilon \overline{\mathcal{A}}] \geq 1 - S$
PF
Will use following version of Chernoff Brd:
Then let $Y_{i} \dots Y_{k}$ be independent random variables
 st . $Y_{i} \in [U_{i}]$ t $Y_{i} = \sum_{j=1}^{k} Y_{j}$. For $b \geq 1$
 $Pr[[Y - E[Y]] = b] \leq 2 \cdot exp(-\frac{2b^{2}}{k})$

Note: X_{i}^{1} 's are <u>not</u> in [0,1] but are in $[\Delta,10\bar{\Delta}]$

Normalize ! let $Z_i \leftarrow \frac{X_i}{10\Delta}$ then $Z_i \in [0,1]$ $X \times X$ let $Z \leftarrow \sum_{i=1}^{k} Z_i$ so $d = \frac{1}{k} Z Y_i = \frac{10\Delta}{k} \cdot Z$ + J=E[ã]=10△ E[Z]

Use Chernoff on Z's we want to make sme this isn't likely with $b = \frac{k}{10\Delta} \varepsilon d$ $\Pr\left[|Z - E[Z]| \ge \frac{k}{10} \le \overline{d}\right] \le 2 \cdot e^{-\left(\frac{2k^2 \le^2 \overline{d}^2}{100 \ \Delta^2 \cdot k}\right)}$ $= 2 e^{-\frac{1}{50} \cdot \frac{1}{50} \cdot \frac$ K= 50 10(2/8)

Moral: it is a lot easier to estimate

averages when the variables

are all within a constant

factor of each other.

XXXX marks where this assumption was used.