Lecture 1

Topics:

· Intro to course = see slides

↓

· Approximating diameter of point set

· Sublinear time approximation

of average degree

Estinating the average degree of a graph average degree of a graph

 $\frac{1}{s}$ stinating the average degree of a grap
def Average degree $\overline{d} = \frac{\sum_{u \in V} deg(u)}{n} = \frac{2m}{n}$

Assume : G simple (no parallel edges, self-loops)

$$
\Omega(n) \neq \text{edges} \qquad (not \qquad \text{"\textit{ultra} - space"})
$$

Representation Via adj list ⁺ degrees :

$$
\begin{array}{|c|c|c|c|}\hline \text{a} & & & & \\ \hline \text{c} & & & & \\ \hline \text{c} & & & & \\ \hline \text{d} & & & & \\ \hline \end{array}
$$

· degree queries : on v return deg(v) · neighbor queries: on (v_{jj}) return ju)⁰ f v i

Estimating Average Degree

Given $G = (V_1E)$ E^{E(O11)} approximation parameter δ ϵ (0,1) confidence ϵ lets assume $0 = x^2$ Output \vec{d} st $Pr[\vec{d} - \vec{d}] \le \vec{e} \ \vec{d}$ = 1-8 where \overline{d} = $\frac{m}{n}$ (average degree)

Naive sampling: $Prck$ $O(3^2)$ sample nodes $V_1 \cdot V_S$ output are degree of sample : $\frac{1}{5} \leq \deg(v_i)$ Straightforward Cherroff/Hoeffding needs 12(n) simples

x bound?

bound?

both a possible degree sequence! lower bound ? dey(1) $\frac{1}{5}$
 $\frac{1}{5}$
 dey(a) ... dej(n) 0 n-1 0 0 0 need $\Omega(n)$ samples to find "needle in haystack" not a possible degree sequence! n 11111111 is possible

Some lower bounds :

" Vitrasparse" case:

^o edges VS. I edge

need $\bigcap (h)$ gueries to distinguish reed ILUI grenies to aistinguish
=> multiplicative approx needs ILUI

WS.

need $\Omega(n^{\frac{1}{2}})$ queries to find

clique node

Warm regular graphs Assume each node has degree Δ up: regular graphs
ssume each node has degree &
Algorithm : output \triangle (Maybe this boxy?) be this
case is too easy ? ofo / Better warmup : almost regular graphs Assume each node has degree in $[0, 100]$ $(so \triangle \overline{d} \in 100)$ Algorithm: potation: $k \leftarrow \frac{50}{5^{2}} \ln(218)$ X ϵ_{μ} D means pick
X Uniformly $K \leftarrow \frac{50}{52}$ In $(3/8)$

For $\lambda \leftarrow 1$ to K do $X \leftarrow 0$

For $\lambda \leftarrow 1$ to K do X uniformly from Set D · pick $\begin{array}{cc} r_i & \epsilon_u \end{array}$ · $X_i \leftarrow deg(v_i)$ Output $\widetilde{d} \leftarrow \frac{1}{k} \sum_{i=1}^{k} X_i$

Number:

\n
$$
OL\xrightarrow{k}{z} In \frac{1}{6}
$$
\n
$$
Orn
$$
\nBehavior:

\n
$$
What is the expected value of $\frac{1}{4}$?\nClaim E[$\frac{1}{4}$] = $\frac{1}{4}$ (The even without assumption).

\nFigure 1.1.11

\n
$$
F = [3] = \frac{1}{4} \sum_{i=1}^{4} E[X_{i}] = E[X_{i}]
$$
\n
$$
F = \sum_{i=1}^{4} \frac{1}{i} e[X_{i}] = E[X_{i}]
$$
\n
$$
= \sum_{i=1}^{4} \frac{1}{i} e[X_{i}] = \sum_{i=1}^{4} \frac{1}{i} e[X_{i}]
$$
\n
$$
= \sum_{i=1}^{4} \frac{1}{i} e[X_{i}] = \sum_{i=1}^{4} \frac{1}{i} e[X_{i}]
$$
\n
$$
For i is expected value?
$$
\nClaim P[$\lceil \frac{1}{d} - \frac{1}{d} \rceil$ is expected value?

\nWhen i is the expected value?

\n
$$
or i is the result of $\lceil \frac{1}{d} \rceil$ and $\lceil \frac{1}{d} \rceil$ is the result of $\lceil \frac{1}{d} \rceil$ and $\lceil \frac{1}{d} \rceil$ is the result of $\lceil \frac{1}{d} \rceil$ and $\lceil \frac{1}{d} \rceil$ is the result of $\lceil \frac{1}{d} \rceil$ and $\lceil \frac{1}{d} \rceil$ is the result of $\lceil \frac{1}{d} \rceil$ and $\lceil \frac{1}{d} \rceil$ is the result of $\lceil \frac{1}{d} \rceil$ and $\lceil \frac{1}{d} \rceil$ is the result of $\lceil \frac{1}{d} \rceil$ and $\lceil \frac{1}{d} \rceil$ is the result of $\lceil \frac{1}{d} \rceil$ and $\lceil \frac{1}{d} \rceil$ is the result of $\lceil \frac{1}{d} \rceil$ and
$$
$$

so can't use Chernoff

↓ Note: X_i 's are not in $\lfloor 0,1 \rfloor$ but are in $\lfloor \Delta_1 10 \Delta \rfloor$

Moral: it is a lot easier to estimate

 \overline{a} when the variables

are all within a constant

factor of each other.

*** marks where this assumption was used.