6.5240 Sub-linear Time Algorithms

Prof. Ronitt Rubinfeld TAs: Matt Hong, Jane Lange Course Administrator: Joanne Hanley

What is this course about?

Big data?

Really Big data

Impossible to access all of it

Small world phenomenon

Social network graph:

- each "node" is a person
- "edge" between people that know each other

Connectivity properties

"connected" if every pair can reach each other

- "distance" between two nodes is the minimum number of edges to reach one from another
- *"diameter"* is the maximum distance between any pair

Small world property

"Six degrees of separation" In our language: diameter of the world population is 6

Does earth have the small world property?

- How can we know?
 - data collection problem is immense
 - unknown groups of people found on earth
 - births/deaths
- Stanley Milgram's 1963 experiment?

The Gold Standard

- linear time algorithms
 - Inadequate...

Approaches when input is too big to view?

• Ignore the problem

• Develop algorithms for dealing with such data

What can we hope to do without viewing most of the data?

- Can't answer "for all" or "there exists" and other "exactly" type statements:
 - are *all* individuals connected by at most 6 degrees of separation?
 - exactly how many individuals on earth are left-handed?
- Maybe can answer?
 - is there a *large* group of individuals connected by at most 6 degrees of separation?
 - is the *average* pairwise distances of a graph roughly 6?
 - approximately how many individuals on earth are left-handed?

What can we hope to do without viewing most of the data?

- Must compromise:
 - for most interesting problems: algorithm must give approximate answer
- we know we can answer *some* questions...
 - e.g., sampling to approximate average, median values

Sublinear time models:

- Random Access Queries
 - Can access any word of input in one step
 - How is the input represented?
- Samples
 - Can get sample of a distribution in one step,
 - Alternatively, can only get random word of input in one step
 - When computing functions depending on frequencies of data elements
 - When data in random order

Isn't this just

- Randomized algorithms
- Approximation algorithms
- Statistics
- Learning
- Communication complexity
- Parallel/distributed algorithms?

Course requirements

- Problem sets: 25%
- Midterm (Wednesday, November 6): 25%
- Project: 25%
- Scribing, grading and class participation: 25%
 - Scribing:
 - Signup on google doc
 - Must be in latex, using provided style files
 - Draft 2 days after lecture
 - Peer grading

Course website

- https://people.csail.mit.edu/ronitt/COURSE/F24/
- Announcements
- Pointer to piazza site
- Lecture notes: Posted before lecture
- Psets: Check for updates and hints.
 - Pset 0 is posted! (not to turn in)
- Scribe and grading instructions
- Project ideas
- Probability review

Canvas

- Pset submissions and solutions
- Announcements (with email notification)

Piazza

Please:

help each other without giving too much information!

be nice to each other!

Caution: anonymous to class but NOT to staff

Project Possibilities

- Read a paper or two or three
 - Explain some lemmas
 - Suggest some open problems
 - Even better -- Make some progress on them, or at least explain what you tried and why it didn't work
- Implement an algorithm or two or three

Can work in groups of 2-3

Of possible further interest:

• Simons Institute program on Sublinear Algorithms:

https://simons.berkeley.edu/programs/sublinearalgorithms

- Reading group on "Graph simplification"
 - Schedule at <u>http://behnezhad.com/gs/</u>
 - First meeting on Friday 9/6 in 32-G575

Plan for this lecture

- Introduce sublinear time algorithms
- Say a bit about the course
- Basic sublinear time algorithms
 - Estimating the diameter
 - Estimating the average degree of a graph

Scribe?

First:

- A very simple example
 - Deterministic
 - Approximate answer
 - And (of course).... sub-linear time!

Approximate the diameter of a point set

- Given: *p* points, described by a distance matrix *D*, s.t.
 - *D_{ij}* is the distance from *i* to *j*.
 - D satisfies triangle inequality and symmetry.
 (note: input size n = p²)
- Let *i*, *j* be indices that maximize D_{ij} then D_{ij} is the *diameter*.
- Output: k, l such that $D_{kl} \ge D_{ij}/2$

2-multiplicative approximation!

Algorithm

- Algorithm:
 - Pick k arbitrarily
 - Pick *I* to maximize *D_{kI}*
 - Output D_{kl}
- Running time? $O(p) = O(n^{1/2})$
- Why does it work?

 $D_{ij} \le D_{ik} + D_{kj}$ (triangle inequality) $\le D_{kl} + D_{kl}$ (choice of l + symmetry of D) $\le 2D_{kl}$ (so D_{kl} is at least diameter/2)

Estimating the average degree

- Given:
 - graph G = (V, E)

with *n* vertices *m* edges,

average degree $\bar{d} \equiv \frac{1}{n} \cdot \Sigma_{u \in V} d(u) = 2m/n$

- Approximation parameter ϵ
- Confidence parameter δ e.g. 1/4

• Output \tilde{d} such that $\Pr[|\tilde{d} - \bar{d}| \le \epsilon \cdot \bar{d}] \ge 1 - \delta$

Access to graph?

- Neighbor queries (adjacency list):
 - Given (v, j) output jth
 neighbor of v
- Degree queries:
 - Given v output degree of v:
 d(v)

A first idea: Naïve sampling

Algorithm:

- Pick O(??) sample nodes v_1, \ldots, v_s
- Output average degree of sample:

$$\frac{1}{s} \cdot \Sigma_i d(v_i)$$

How many samples? Straightforward Chernoff/Hoeffding bounds $\Omega(n)$

Lower bound?

A first idea: Naïve sampling

Algorithm:

- Pick O(??) sample nodes $v_1, ..., v_s$
- Output average degree of sample: $\frac{1}{s} \cdot \Sigma_i d(v_i)$

Lower bound?

Not a possible degree sequence!!

Is possible!

Some lower bounds:

- "Ultrasparse" case:
 - O edges vs. 1 edge
 - Need $\Omega(n)$ queries to distinguish
 - Yields lower bound on multiplicative approximation
- Average degree 2 example:

Need $\Omega(\sqrt{n})$ queries to find clique node

₿¢°

Assumptions

Average degree d

Warmup 0: Regular graphs

Assumption: each node has degree Δ

Algorithm:

Output Δ

