Lecture of Lecture 2

Topics:

· Sublinear time approximation

of $\frac{1}{2}$

· Estimate number of connected

components

 $\frac{L}{1}$ Last time + time
Estimating the average degree of a graph average degree of a graph $\frac{1}{s}$ stinating the average degree of a grap
def Average degree $\overline{d} = \frac{\sum_{u \in V} deg(u)}{n} = \frac{2m}{n}$ Assume : G simple (no parallel edges, self-loops) $\Omega(n)$ edges (not "ultra-sparse") Representation Via adj list ⁺ degrees : # · degree queries : on v return deg(v) · neighbor queries: on (v_{jj}) return ju)⁰ f v i

Estimating Average Degree

Given $G = (V_1E)$ E^{E(O11)} approximation parameter δ ϵ (0,1) confidence ϵ lets assume $0 = x^2$ Output \vec{d} st $Pr[\vec{d} - \vec{d}] \le \vec{e} \ \vec{d}$ = 1-8 where \overline{d} = $\frac{m}{n}$ (average degree)

Last time we saw that "naive sampling" ie

 $Pick$ $O(33)$ sample nodes $V_1 \cdot V_S$ output are degree of sample : $\frac{1}{5}$ \leq $\deg(v_i)$

Does not work so well , although we did prove that if $\underline{\text{all}}$ deglv) are in $[0, 100]$ then constantly many samples are sufficient. for the naive sampling algorithm

In general, we saw a handwavy argument that

· ((n) time is need to give ^a multiplicative estimate for average degree lithis used Ultrasporse" graphs)

· el (Jn) time is needed for

estimating average degree, even when the average degree is >1.

Loday we will see the general case, to different algorithm

General Case: "Order" edges to control outdegree

Observation $\sum_{u \in V} deg^+(u) = m =$ $\frac{n}{\lambda}$. \overline{d}

(since each edge only counted once instead of twice as in \geq deglus)

WOWI

$$
\frac{idea}{dea} =stimate
$$
 $arene$ $(dea^+(a)) = \frac{1}{2} \cdot d$

problem ?We can querydegla

benefit :

Lemma
$$
F \sim \epsilon V
$$
 deg⁺(v) $\leq \sqrt{2m}$

Proof $Proof$

Consider order of
$$
v_s
$$
's by α .

 $V \downarrow H$ - $\overline{}$ Vis ordered . $V_1 V_2 ... V_k ...$ V_1 V_2 ... V_K ... $V_{n-\sqrt{3}m+1}$... V_n $\begin{array}{c} \overline{} \\ \overline{} \\ \overline{} \end{array}$ $\begin{array}{ccccccccc}\n\mathsf{ordered} & \mathsf{v}_1 & \mathsf{v}_2 & \ldots & \mathsf{v}_k & \ldots & \mathsf{v}_{n-1} & \ldots & \mathsf{v}_n \\
\hline\n\mathsf{by} & & & \mathsf{v}_1 & \mathsf{v}_2 & \ldots & \mathsf{v}_k & \ldots & \mathsf{v}_{n-1} & \ldots & \mathsf{v}_n \\
\mathsf{by} & & & & & & & & & & \\
\hline\n\mathsf{de} & & & & & & & & & & & \\
\mathsf{de} & & & & & & & & & & & & \\
\mathsf{de} & & & & & & & & & & & & & \\
\math$ point to define $H \subseteq V$ to be Jam hodes right
with highest rank (degree) wrt α heavy nodes : $\nonumber \begin{array}{c} \n\forall \begin{array}{cc} \mathsf{v}\in\mathsf{H}, & \mathsf{deg}^+(\mathsf{v})\in\mathsf{Iam} \quad \mathsf{sinc} \ \mathsf{edges} \end{array} \end{array}$ edges "leaving" $\mathsf{v}\mathsf{-} \mathsf{go}$ to bigger nodes (which must also be in H) light nodes : $\forall \forall \in V \setminus H \mid \text{det}(\theta) \leq \text{deg}(\theta) \leq \sqrt{2m}$: $Why?$ if not, $deg(r) > \sqrt{am}$ assume but all win H have contraction $deg(w) \geq deg(v) > \sqrt{am}$

$$
30 \text{ thd degree} \geq d(v) \n> |H| \cdot \sqrt{2}mv + \n> 30meHiny pvalue \n> 300meHiny pvalue \n> 300meHiny pvalue \n> 300meHiny pvalue \n
$$
\sqrt{2}mv + \sqrt{2}mv \sqrt{2}mv
$$
\n
$$
\sqrt{2}mv \sqrt{2}mv
$$
$$

Question to think about! $Claim E[X_i] = d$ PL $E[X_{i}] = \sum_{\tau \in V} P_{\tau} \sum_{\tau} \text{Classen in (1)} - E[X_{i}] \tau \text{ chosen in (1)}$ $=$ $\sum_{v \in V}$ $\frac{1}{n}$ \cdot $E[X_{\lambda} \mid v]$ chosen in (1)] = $\frac{1}{n}$ \leq \leq NAV Fi $= \frac{1}{n} \cdot \sum_{v \in V} \sum_{u \in N(v)} \frac{1}{deg(v)} \cdot \lambda \cdot deg(v)$ $X = \frac{1}{2}deg(v)$ e lse $X_i = 0$ $= \frac{2}{n} \cdot \sum_{v \in V} deg^{+}(v) = \frac{2m}{n} = d$ But how many samples do we need to assure that we are close to
expectation? Here is where we use
graph properties!

def. Var[x]=E[x²]-E[x]

 $Clain$ $Var[X_i] \leq 4 \sqrt{3m} d$ $\frac{df}{dx} \quad Var[\chi] = EL(\chi^2) - EL(\chi^3) = EL(\chi^2) \quad \text{as above}$ = $\frac{1}{n}$ \leq $\frac{2}{\sqrt{\pi}}$ \leq $\frac{1}{\sqrt{\pi}}$ $\frac{1}{\sqrt{\pi}}$ $\frac{1}{\sqrt{\pi}}$ $\frac{1}{\sqrt{\pi}}$ $\frac{1}{\sqrt{\pi}}$ $\frac{1}{\sqrt{\pi}}$ $= \frac{4}{n} \sum_{v \in V} deg^{+}(v) \cdot deg(v)$
= $\frac{4}{n}$
= $\frac{4}{n}$
= $\frac{4}{n}$
= $\frac{4}{n}$ \leq 4. $\sqrt{2m}$ \geq deg (v) $=4.22m \cdot d$ 2 veeful facts about varience! So Jemma let $Y = k\frac{k}{K_{1-x}}$
 X_i Where X_i 's are lid
 X_i imported
 X_i
 X_i imported
 X_i
 X_i 50 can reduce by
Jariance by
Sampling more!

