
Lecture 3
-

Topics:

· Estimate number of connected

components

· Estimate minimum spanning tree wt .

Estimating the number of

connected components

O

&

· vs.
2 I

need &(n) time

=> multiplicative approx
needs

linear time.

what about additive
approx ?

Additively estimate # of Connected Components

Gian : Graph G
,

max degreed E Adjacency
list

parameter E representation
| vl = n

IE1= m

Output :
let c= # coun comp in G

output y St,

C - En =
y

= + En

Jap
*

&

C = 3

Mel : Adjacency list data structure

Main Insight :

↑ different characterization of # conn comp:

Nation &,

let Nv = # nodes in v's con comp

*
un + nu = 4

N=3
n=

1

Observation :F conn comp A V

At=A
= 1

so come comp c =St

Why better ?

maybe not?
O(n) time ? estimate

compute Nu 3 estimate
Sum n terms ? estimate

Gol Estimate C
= A

additive
- error1) estimate in quickly

2) estimate Sum via sampling = additive error

but implies multiplicative error

bnds

Erst :

-

Estimate t : Lifitgetsreallysmalanmore Ely?⑫noton

↑ = min Sun
,
45 = = maxindef

= ern *
Lemma Fu In-n) = 4/2 ⑪
C1-2)

-2E
↓

idea : if Un is really big ,
can be hard to compute

Art in this case to is s f 2312

j

=> never need > 212 BES steps to compute In to

within Ely

Nv = # nodes in vs con comp

I↳
Proofof Lemma :

if nac21s the M : Un so th = 0

if Na>2 then M = 2 so

< ~

Thi
=> I l

A

Nv = # nodes in vs
def

con comp
- An = minGun↳

How do we compute Mm ?

Algorithm :
in Nu

Do BFS froma until
↓

· visit whole component of=2/a
OR

· visit 212 distinct nodes

Output # visited nodes

rontine : 0(0 : Y max # of notes

↑ visited

timeperst at

actually ,
O(U+ Ys) suffices

... why?
&we will come back to this

Nv = # nodes in vs def = min [Un
,
43

con comp

I
-

= 2 En
Observation : F conn comp A v

a = V

Lama In In-l = &2

come comp c

= r
in Corr I -2)=L

= n : (average value of)

How to estimate n ?

Algorithm estimateI

b is a constant

r = b/

Choose U = Su
,

... ur5 random nodes

Vacu
M

compute n
Wi

vin above algorithm

&Output 5 =+in
-

le
average

ra
Uleof sumpelul=r

↑

runtime :

8) 0 +) = 0)
un

algorithm
to Compute na

Output =in Nv = # nodes in v's con comp

average
value

Observation :F conn comp A V

Theorem: At = n = 1

-
here

,

let i
= in for each sampled Wit U

U

Sso Fi recall N
- I C

/n-Output

let
p = ESXi) =E

let J:

recall r = bls3

1 = n = 2/ (from definition)

So 1 = 2
=> n = 2 En

uEV Nu I

·

s
Pr[lEcEen] = Pr[li - c 12 E .]

= Pr[IE-E .]
- e(rp8)

I
e

=-
- -(b/ .. -

-(b)
e ↑ C ↑

f picknot
this is bbigough
why we so that

set t to -r(b)
= Yye

instead of 0

B

Finishing up
:

We had

k-2 = En by earlier corollary

now we have le-cl = En

W

(-3) = an by F

↑ ↑
output m
com

p

Approximate Min Spanning Tree (MST)

Input (1) G = (VE) adjacency list representation
n = IV)

max degree
each edge has weight

War E El ..Ju503
un

Connected ↑ i?. Wur *E

(2) E assumption that
edges integralnot

necessary
#

let M = min Sw(i)3
un

Tspans G 2W
m

ij
tree (j)ET

output M St (12) M = M = (1+3) · M

·

assumption on uts => N-1 = w(i = win-1)

A different characterization of MST :

↳ El = G(,))War El .. 135 edges oft

(i) = (V , EM)
gli) = # con comp

of Gli)

Some examples :

1) w = 1 only size I wits + connected

(by assumption)
here = n - 1

2) w = 2 weights E31 ,23

Do ·
O

(1)

G G
c" = 2

El = G(u , r)) War 31 .. 133

(i) = (V , EM)
gli) = # con comp

of Gli)L
Kruskal's idea for MST :

(paraphrased)
Use as many

of I edges as you can

then only need wt2 edges to connect

current components
=> need -1 +2 edges

Total MST not :

M = 1 : (w+ ledges + 2 . (w+ 2 edges)

= (- 1) + w + 2 edyes
-m

C" - 1

=
n- 2 + c)

W - 1 Kruskal's =>

(i) this is sumeLim M = n - w+ FMSTs
why?
-

If
.

let di = # edges of ut i in
any MST of G

& i
= # com comp

of Gl El = &(,)) War El .. 133

179 (i) = (V , EM)
= (- 1 gli) = # con comp

of Gli)L
· ((0) = M ↳in M = n-w+

W

M= Zi
=Edit 11 1

- Ci

w
Eu

= + (4 + (h +... + C
(w- 1)

- I

n - 1

=+n - w

F

El = G(u , r)) War 31 .. 133

(i) = (V , EM)Approximation algorithm : gli) = # con comp
of Gli)L

For i = 1 o w- ↳in M = n-w+
/ approx

conn comp
of Gli) to within

②n additive error

zu
-W - 1

Output M = n-w + [li) let E=
zw

i = 1

Runtime :

(4) : (*) per
call to approx
-

w
how do

you
work withTotal : JC Gli) ?

since calling approx-CosbyrapsIt
approx-ce

Can improve to 0(Ezlog #)GNo dependence
need(*) on n !!!

El = G(u , r)) War 31 .. 133

&:(e)Approximation algorithm gli) = # con comp
of Gli)

For i = 1 o w- ↳in M = n-w+
/ approx

conn comp
of Gli) to within

②n additive error

zu
-W - 1

Output M = n-w + &(i) let E=
zw

i = 1

Approximation guarantee : howa
Call

approx
#C with "failure" prob -How

/
Union bud

Pr[all calls give E'napprox]2 1- EW

If↑ happens ,

IM-M = W.. n = an a
additive
error

2 and

since M2 n-1A IM-M = EM < mult
error

bud

Which edges are on
MST ?

What if w is big ?

