Lecture 4 : Sublinear time algorithms for coloring graphs

Graph Coloring

&f ^a proper -coloring of ^G $assyns$ color G from "pakthe" 51.3 $\begin{array}{ccc} 0 & \cdot & \cdot & \cdot \\ \hline \end{array}$ each $v \in V$ st. \forall $(\alpha_1 v) \in E$ $\subset \alpha_1 \neq \subset_V$

· in general , NP-complete

o important case solvable in linear time ΔH -coloring

always exists since G reedy algorithm: have $\leq \Delta$ nbrs runtime : For each veV of the size is
assign Cv different from A+1 for each $v \in V$ 4 forced $A+1$ $O(m)$ assign c_{v} different from all C_{μ} for $u \in N(u)$

Can we do better?

Greedy list coloring: ↓ Initial palette For all v , let $d(v) = \{1, \ldots, n\}$ $\Delta H\tilde S$ For each $v \in V$ (arbitrary order) $i\int d(v) = \oint$ out put FAIL $e^{\frac{1}{2} s}$ C_v \leftarrow any color in $d(r)$

remove $c_{\textbf{v}}$ from all nbrs u of v

runtime:
 $\sum_{n=1}^{\infty}$ (time to find color in $d(x)$ $\begin{array}{c} \Sigma$ (time to fund color in 2(r)
 $\begin{array}{c} \nabla + \Sigma$ time to remove C_V from 2(u) $n_{\rm F}$ = O(m)

Sublinear Time Algorithm not in n Query model : degree queries : what is deglu)?

pair queries : is $(u,v) \in E$?

nbor gives: what is
$$
k^{th}
$$
 nbr of u?

L comments ^o no bound required on ⁸ for runtime · non-adaptive · M(nwn) time required

2() is , Palette Sparsification u's sparser palette ↓ ^V nodes v , ...,⁸⁴³ sample /Olloyn) colors &(v) from ³¹ Surprisingly Sparsifying the palette this way probably) doesn't kill colorability : I can be colored st. u Ve, C⁺ 2(v) Munclaim whp , * O simple argument that always exists [↓] a color left to use for v in greedy no longer holds !

Why palette sparsification ? Ada (since guaranteed that coloring respecting smaller palettes remains can throw out all (u, - r) st. ((a)M((- + 4 sparsity edges they will not even in Gl , Insider using same colors! how much sparser ? whp Onlog2n) edges remain Why ? VueV , let < ... k be colors chosen by ^M ^a Fr ⁼ N(u) ⁺ it (1 .. k] gag und set Xvi & ! if[~] chooses color i (should really be Let X * [Xu, i Tupper bad on deglu) y(a) i= 1 vzN(u) in sparsified graph but notation un since might share is getting complicated) # edges due to 2 colors with u color Ci

 $2 - r$ chose K out of Δ +1
Colors too.
What is probability $E[X_{\nu_{i^{\lambda}}}]=P[X_{\nu_{i^{\lambda}}} = 1] = \frac{K}{\Delta^{+1}}$ it landed on i? Then $E[X] = \sum_{i=1}^{k} \sum_{i,j} E[X_{\nu,j}]$ linearity $i = \sqrt{v \epsilon N(\alpha)}$ expectation $4k \cdot \Delta \cdot \frac{k}{\Delta H} \leq k^2$ $\begin{array}{rcl} & \Delta^{+1} \\ & & \\ \hline \\ N(\omega) & & \\ \Delta^{+1} & \leq & \\ \end{array} \begin{array}{rcl} & & \\ \Delta^{+1} & & \\ \Delta^{+1} & & \\ \end{array}$ Using $k = \Theta(\log n)$ shows $\forall u$ expected degree of u in remaining
graph is $O(log^2n)$. Can show whp with more work

palette sparsification => sublinew time ! Calso, good sublinear space "streaming" algorithms ↓ m assively parallel computation algorithms) $($ $)(n^2/2)$ - time Palette Coloring Algorithm t 1. Construct palette V u EV O(nlogn) 2. Construct Gsparse : $O(nlogn)$ Vc , find X_{c} = { v } $c \in \mathcal{X}$ \setminus { S $if u_1 v \in X_c \longrightarrow Quevy$ all pairs of nodes in [↓] (u,) ⁼ ⁶ then (u , $rac{1}{\sqrt{1+\frac{1}{n}}}$ Esparse each χ_c to find Esparse Slinew space "straming" algorithms

slinew space "straming" algorithms

alek Gobring Algorithm

elek Gobring Algorithm

elek Gobring Algorithm

elek Gobring Algorithm

elek Gobring Algorithm

to V

space in the Prind Espac $\begin{array}{rcl} \text{(that could take 2)} & \text{how much time?} \\ \text{(at clear) } & \text{if } \left(\frac{|\lambda_c|}{2}\right) \leq (\underline{\lambda}+1) \cup (\underline{n}^2 \log^2 n) \\ & \text{if } \left(\frac{|\lambda_c|}{2}\right) \leq \text{if } \left(\frac{|\lambda_c|}{2}\right) \leq (\underline{\lambda}+1) \cup (\underline{n}^2 \log^2 n) \\ & & \text{if } \left(\frac{|\lambda_c|}{2}\right) \leq \text{if } \left(\frac{|\lambda_c|}{2}\right) \leq \text{if } \left(\frac{|\lambda_c|}{2}\right) \leq (\underline{\lambda$ that could take a $E\left[\begin{pmatrix} |x_c| \\ x \end{pmatrix} \right] \leq E\left[\sum_{\substack{u,v \\ u,v \\ c'v^2}} \mathbf{1}_{\substack{uv \leq k \\ v \text{ odd}}} \right] = \binom{n}{2} \cdot \frac{k}{2} \cdot \binom{n}{2} \cdot \binom{n^2 \log^2 n}{2}$ \leq \tilde{D} (\tilde{D} \geq \tilde{D}) (can be shown whp)

3. Perform greatly list coloring, problem on G sparse
\nrecall Greedy his coloring; time: O(Eaps) =
$$
\tilde{D}(n)
$$

\nFor each $T \in Y$ (arbitrary order)
\nif $\alpha(n) = \emptyset$ out part FAIL
\nelse $C_{n} \leftarrow$ any color in $\tilde{d}(n)$
\nremove C_{n} from all nbs u of
\n T in Gspars
\nOur can find an coloring in $\tilde{D}(n^{3/2})$ time
\nthus?;
\nif $\Delta \leq 3\pi$
\n 1π $\Delta \leq 3\pi$
\n 1π $\Delta \leq 3\pi$
\n 1π $\Delta \leq 3\pi$
\n $\Delta \leq 3\pi$ <

Why does main thm hold? e . g. why is there sfi/l a Δf coloring after sparsification? will show ^a weaker thm (allow ²⁸ colors) ^V nodes v , sample $O(log n)$ colors $d(v)$ from $31, ...$, 203 $\frac{1}{2}$
Wegler Claim whp, G can be colored st. $\forall v, C_v \in \mathcal{X}(v)$ Pf run Palette-coloring alg above with palette size s: fail if a node ever runs out of colors $When a Hmpt$ to color node v : Gain:
Much Weaker than Jhen altr
- Say $color$ $C \in \{1..303$ "good" if C not already weaker than \leq say color ce $\frac{3}{1}$..203 "good" if c not alread
saying no $\frac{2}{\sqrt{3}}$ say color to color any nbr of v when previous not a new york is vised to color any nor or visited had c_i in $i\frac{1}{2}$ α for contains any "good" colorc, then can its list (v) contains any "good
color v successfully

Since
$$
d(v)
$$
 chosen independently of
other lists, can think of
Chassing it 'now'. Since v has ϵ_D
nbors, all c are "bad"

ph2 d(v) contains no good color)
 ϵ_P pick all colors of τ from
close already chosen by nbr)
 ϵ_P [pick all colors of τ from
cloors are $\frac{1}{\sqrt{2}}$ = $\frac{(\frac{1}{2}(\frac{1}{2} \cdot \cdots \cdot \sqrt{2} \cdot \cdots \cdot \sqrt{2})}{\cdots \cdots \cdot \sqrt{2} \cdot \cdots \cdot \$