Lecture 7+8

· Property Testing · Testing Planarity · Partition oracles

Planarity: def a Planar graph can be drawn in plane st. edges intersect only at endpts. e . g. planar not planar <u>Cool Thm</u> [Kuratowski] G is planar iff does K_{5} or $K_{3,3}$ as minor ↑ ↑ subgraph complete complete repeatedly
graph on bipartile contract b index and b into b into nodes on nodes side How to test planarity? ↓ $\frac{1000 + 10}{1000 + 100}$ ks + planarity?
 $\frac{1000}{1000}$ P= $\frac{2}{5}$ G | G is planars in
sublinear
time

Hyperfiniteness

 \det G is (ϵ, κ) - hyperfinite if can remove $\leq \varepsilon$ n edges & remain with all connected components \vec{G} is (ϵ, k) -hyperfinite if
 \vec{G} is (ϵ, k) -hyperfinite if
 \vec{G} remain with all connected components
 \vec{G} size $\leq k$. $\leq k$ can be fit of ϵ remove few edges + break up gruph into tiny pieces . similar theorem *V* for any class
of graphs by
defined by $Im_{postont}$ Thm $V \in \Delta$ 5imilar Tanglass
, 7 constant c 5t. V for any class 4 forbidden
minors" every planar graph of max degree \triangle is ($\epsilon \Delta$, ϵ/ϵ 2) - hyperfinite Web subgraphs of deg $\leq \triangle$ planar graphs</u> are also deg = 1 planar graphs \Rightarrow also hyperfinite

Why is hyperfiniteness useful? $\frac{Why}{15}$ is hyperfiniteness useful?
how in subliner time? G . Partition 6 with parameters $\left(\frac{2}{2}, \frac{c}{2}, \frac{c}{2}\right)$ $\frac{c}{\tilde{\epsilon}^2}$ ↓ Why is hyperfiniteness vsetul?

for in sublimar time? G :

for the with parameters $(\frac{\epsilon}{2}, \epsilon, \frac{\epsilon}{2})$
 $G' \leftarrow G$ minus edges between partitions

ice properties of G' :
 $\cdot G$ planer $\Rightarrow G'$ planer nice properties of 6' : $-$ G planar \Rightarrow G' planar \circ G' is very G : (E) similar to 6 :)
沙 I $\bm{\mathcal{F}}$ $differ$ by $\leq \frac{\varepsilon}{2} \triangle$ edges \Rightarrow if G is ε -far from planar * then G' is $\frac{E}{2}$ -far from planar $\left($ s **R** ** in 1 \bullet · All connected components in G! Hen G' is $\frac{2}{3}$ -far from planar
All connected components in G' are $size \quad \mathcal{O}(\mathcal{V}_{\mathcal{E}})$ ↑ in time indep of n If there is no such partitition of 6, then 6 is not planar !! but, can we find it in sublineartime?

Partition Oracle

Cuse slightly different parameters from previous)

 $\int \frac{1}{\pi} \, dx$ or $\int \frac{dx}{y}$ $\nonumber \frac{\partial v + \partial v + \partial v}{\partial t} = 0$ name of $v's$ partition S.t. $\forall v \in V$ (i) $|P[v]| \leq k$ 3 partitions (a) $P[r]$ connected $\int_{connected}$ - if ^G planar then y $v \in V$ (1) $|P[v] \le K$
(a) $P[v]$ connected (3) $P[v]$ connected (2) $P[v]$ connected the (w) of (w) $\ge \frac{q}{10}$) $1 \frac{q}{2}$ $\ge \frac{q}{2}$ ≥ 0 $(w_1 + w_2 + w_3)$ 1 $\{(w_1 + w_2 + w_3) \leq \frac{\epsilon_2 w_1}{4}$ small enges crossing small Ne for planar graphs there is at least one ^P, I'LL tor planar grophs there is at least bi the oracle doesn't have to decide "in advance" which partition to use, but must
answer consistently (without memory of p
difficulty Which further to $\frac{10}{100}$
answer consistently (without memory of past
a main difficulty or knowledge of future

Algorithm given partition oracle ^P ↑ assume it always works for planar G I. Does P give partition that "looks right"? /e. i
S few crossing edges) \cdot \hat{f} \leftarrow estimate of # edges (u,v) st. need to need to
sample random > $P[u]$ = $P[v]$ to within additive error = $\frac{\epsilon_{\Delta n}}{8}$ edges, easy w ith prob of failure (8) $\leq \frac{1}{10}$ is constant \cdot if $\hat{f} \geq \frac{3}{8}$ s.a.m, output "not planar" + halt II. Test random partitions for planarity · Choose $S = D(\frac{1}{2})$ random nodes · Y s ϵ S if PES not planar S size ϵ r to S output "not planar" shalt · Output "planar"

Runtime: $PartI: O(\frac{2}{2})$ calls to oracle part I: $O(\frac{1}{\epsilon^2})$ calls to oncle
part II: $O(\Delta|\epsilon^2)$ calls to determine $\mathfrak{P}[s]$ via BFS $O(\Delta/\epsilon^3)$ total calls Analysis : Cassure oracle works for planar 6) $del \quad C = \hat{z}(l_1v) \in E \mid P(u) \pm P(v) \hat{z} \quad \text{where} \quad \text{that cross}$ between partitions" between partitions"
I. if G is planar, I good partition + by assumption $C = \hat{\mathcal{Z}}(u_1v) \in E \mid P(u) =$
is planar, 3 good edges crossing partition $\leq \frac{c}{4}$ so $E[\hat{f}] \leq \frac{\epsilon \Delta n}{4}$ \Rightarrow (by Chernoff/Hoeffding) $\hat{f} \leq \frac{\epsilon \Delta n}{4} + \frac{\epsilon \Delta n}{8} = \frac{3\epsilon \Delta n}{8}$

with $prob \geq 9/10$
 \Rightarrow algorithm continues to part II with prob $\geq 9/10$

Also, FsEV , PCS] is Planar

=> output "Planar" with p rob $\geq \frac{q}{10}$

II. If G is S- far from planar:
\nCase 1. Partium P doesn't satisfy
$$
|C| \le \frac{\epsilon \Delta n}{\lambda}
$$
 :
\nsampling bounds $\Rightarrow \frac{\lambda}{\lambda} > \frac{\epsilon \Delta n}{\lambda} - \frac{\epsilon \Delta n}{\lambda} = \frac{3}{2} \epsilon \Delta n$
\n \Rightarrow output "not planar" with $\rho nb \ge \frac{9}{10}$
\nCase 2. P satisfies $|C| \le \frac{\epsilon \Delta n}{\lambda}$:
\n $G' \le G$ with edges in C removed
\nnode: G' is $\frac{\epsilon}{\lambda}$ -close to G
\nso G is ϵ -far form $\rho lancr$,
\n $\Rightarrow G'$ is $\frac{\epsilon}{\lambda}$ -br from $\rho lancr$,
\nisuse: we are $\rho i \epsilon$ is $\frac{\epsilon}{\lambda}$ -for form $\rho lancr$,
\nnot random edges.
\nbut $\rho n r$ is degree $\epsilon \Delta$
\nsince $G' \ge \frac{\epsilon}{\lambda}$ -far from $\rho lancr$, must
\nchange $\ge \frac{\epsilon}{\lambda}$. An edges, which touch $2 \le \frac{\epsilon}{\lambda}$ nodes

 $\begin{array}{rcl} \mathcal{S}0 & \text{with} & \mathsf{prob} \geq & \frac{\mathsf{c}}{\mathsf{a}} \cdot \mathsf{n} \end{array}$, pick node in component which is not 1. Component
H-minor free. # Remaining issue : How do we implement P ? Pan : 1) Define global partitioning strategy 2) Figure out how to locally implement lonly find partition of given node, y find partition of
not whole solution).

Useful concept : Isolated Neighborhoods

 d ef S is $(\delta_k k)$ - isolated neighborhood of node v if: (1) $v \in S$ (2) (3) $|S| \leq k$ $\begin{array}{lll}\n\text{concept:} & \text{Isolated Neighbourhoods} \\
\text{S is } & (\delta_k k) - \text{isolated neighbourhood of node 0} \\
\text{V is some of the non-angled} & \text{S is a non-angled} \\
\text{S is a connected} & \text{S is a non-angled} \\
\text{S is a non-angled} & \text{S is a non-angled} \\
\text{S is a non-angled} & \text{S is a non-angled} \\
\end{array}$ (4) # edges connecting $S + \overline{S} \le \overline{\delta}$ |s| T S <1 but degree bound only gives Δ · $|s|$ Observe in planar gruphs, in any good putition, most nodes have (δ, k) -isolated nbhds μ ^{ns}, in any
 μ (δ _jk) -ise
 ϵ Δ μ ϵ obvious? yes, on average but Planar G is hyperfinite => 7 partition with few total crossing edges but maybe some parts have lots of edges coming out? still, most have
close to average. (Markov's #) home thinkat home

Will need observation to be true

in context of evolving "step-by-step"

partition.

Luckily , graph stays planar/hyperfinite as

evolve (remove nodes)

Global Parthoning Algorithm = mental-though
\n
$$
Let
$$
 π_1 ... π_n be nodes in random order

\nLet π_1 ... π_n be nodes in random order

\nFor $i = 1$... n do

\

Local Simulation of Partition Oracle

- o input V
- \circ assume access to random fith $\pi(v)$ st. $\pi: v\rightarrow \infty$
- · Output P[v]

#gorithm on input ^v I recursively compute P[w] - ^w st. why does - H(w) <(v) ↳ recursion stop ? [↑] dist w from VE2k ³ Oldoft notionlyrecurse on lower rankednodes #. If ⁵ ^w ^s^t reP[w] <P(r) already decided by (A) then PCr] ⁼ P[w] earlier w can't be in (B) else look for (1, 8) isolated nbhd of r [nbhdofaa (ignoring nodes in PCw) for smaller wis) otse if find one , P[r] =this nbhd else P(r] =5r3

Implementing algorithm : n_{plement}
Step I : $\triangle^{\mathsf{O(k)}}$ recursive computations on lower ranked nodes. Analysis similar Δ^{OK} renked nodes. Ambysis similar
to "greedy" lecture => 2 + K=0(YE3) $step$ $I\!I$: (A) computed in step I (B) figure out remaining nodes whin figure out remaining nodes wlin
dist K from step I. (dx) Brute force on graph of size ED Can do much better: $poly(\Delta/\epsilon)$ possible !