
Lecture 12 :

Testing properties of strings
Lower bounds via Yao's method



different than edit
whichisProperty Testing of Strings : ↓ distance, reasonable

also
to consider.

d Wfar from In if FyeP .

why differ on 37 locus

Property tester for Ph : On input w

· if WePn
, pass (with prob = 3/4)

· if w E-fur from Pr
,
fail (with prob3/)

Palindromes

Let Pn = &wl w is an bit string & W = vvR3

Query complexity of prop tester ? OL)

Algorithm :

Do O(YE) times :

Pick random i
,
test if Wi = With

Contrapositive : Why does it work ? If E-far -> likely to fail
equivalent top =)

q equivalent if not likely to fail -> E-close

79=P If test passes whp ,
then I an "pairs" (i) n - i+)

don't match
.
Can fix each one with 1 En

changes .



Concatenations of Palindromes

In = 5w) w is n-bitstring w = rvBuuR]

YVz ... VaV ... VaV ,
4

, 42 - - UjHj ... UzU,

def Wfar from In if FYEL
why differ on =in locus

(different than edit distance
,

which is also

a reasonable distance to consider)

Im if algorithm of satisfies

Ext In Pr[d(x) = Pass] = 213

FX E-far from L Pr[d(x) = Fail] 2213

then of makes (in) queries.



How does one prove lower bounds ?

a difficulty : property testing algorithms are

randomized
X

how do
you argue

about their behavior ?

Useful tool for lower bounding randomized algorithms:

Yao's Principle :

If there is a probability distribution D on

union of "positive" ("yes"/pass) & "negative" ("no"/"fail")

inputs ,
st any deterministic algorithm of query

complexity Et outputs incorrect answer

with probability =Y3 on inputs chosen according
to D

,
then t is a lower bound on the

randomized query complexity·



morals average case deterministic 1
.
b

.

principlea↓ 3
randomized worst case l

.
b
.typesos

why ? proof omitted

Game theoretic view :

Alice selects deterministic algorithm A
Bob selects input

payoff = cost of A(x)

Von Neuman's minimax -> Bob has randomized

strategy which is as good
when A randomized.



#ofof Theorem

Pa :
give distribution on inputs that is hard

for all deterministic algorithms witho(un) queries.
Then Yao - randomized 1

.
b

.

of(i)

twoy assume 61

Distribution on negative inputs :

N = random string of distance = En from In
- should output "Fail" on these

Distribution on positive inputs :

p =
1

. pick Ken [
+ 1

, 5)
notof k S 2. sick random v

,
4 st

.

I = K
,

lu)=↓
E> livluuP) 3. output VVRuuR
are both [413 & should output "Pass"

+ = 24/3 on these

note : some strings can be generated by EIK
e .g. 00000000...



Distribution J :

· flip coin

·

: output according
ta

Assume (for contradiction) that there is a deterministic

algorithm of using - = o (ii) queries
Consider query tree of :

see
location A

in see
⑤ depth +

location location
100 To ,

Et
O I O I root-leaf

paths
o I 3

& & 2
&

·
I

· : S

wlog,
all

location
I

leaves have

1000- 0
deptht

I
O

1 r
Output leaves

PASS FAR FAIL PASS
v

labelled with

Asanswerllows path
& hopefully inputs inPreachs"lessleaves



Note :
we can calculate probability of reaching leaf

Since we know input distribution(

Error of leaf I : If I is labelled should fail

Pass : E- (l) = inputs we 50,1"/WE-far -w reaches leaft]
Fail : Et(1)= [inputs we013")WeL + w reaches leaf &3

↑ should
pass

Total error of a on D :

= Prg[wE] + &Pr[weEl
"pass" "fail"

should fail but should pass but reach

reach passing leaf failing leaf

Why is this big ?

will show lots of input from both NrP end

up at all leaves.



Main Claims

&1 if t = o (n)
,
fl at depth t

Prg[weE-(1)] = (z- 0(1) 2 -

am2 if t = o(a)
,

o I at depth +

Prg(w + E
+(1)] = (z - o(1))2

-

So total error of of on D is

= ( - ol)a + [(z - o())2
+

2 t -o
PASS

F
m

still need to prove the claims...



#ofClaim is close to

all would end up uniformly distributed at each leaf

=> Prwen [WeEll] = At t
but how much can distribution change by using

Ninstead of U ?

Inl = z . na

↑
Choice ofchoice of

u
,
u

# words at dist 2 from In :

M2 .n.) +2l

so E(l)2 gn-e -242+ 23log(kn
= (1- o())2n

-t

#strings ↑
# strings

that reache that allowed to

assumeworstcasea
E

pass

so PrfweEl]P(WE( -02
needs to N upper and on

#
come from N # strings in N



Proof of claim 2

will show : for every fixed set of olval queries ,
lots of

strings in In follow that path.

count #strings agreeing witht queries of leaf:
At

count stringsinGg""""""23

38

Main difficulty : · 000110000 1111100 11111

Fix K= 10
44

&3 k + should see same value at

12
,

n- 1
&

should o
y se

13
,

n-2

value :
⑳ maybe no string in In follows the path ?

⑳ that's why we pick & randomly in [416 : "13] !
does choice of not all queries

bad e .y .
for most strings,

K correlate the 348 are not correlated
queries ?

For given
leaf I

,
let Q indices queried on path to

For each of (E) pairs of
queries q ,queRe,

at most 2 choices of K for which

9. , 92 symmetric around either K or Et

e
.g. I i I

need k= g+2
g. 1792 only / choice inthis case 2



X "good
"

=> # choices of K Sit
. A par in Qe

symmetric around K Or Eth is forthesega=- - 2() - (
- 0())7 E

is 2

using thaa

So Prp[weEt(e)] = ESPp(w/k)Pr[choose K] · 1wEETH)
min

=) [D-ol) · 5) . 2
* --

=ins path
#goodk on good

= (l- o()) . 2 t
#


