Szemerdi's Regularity lemma (SRL)

lesting dense graph properties via the SRL :

 Δ - freeness

example question :

how many triangles in ^a random

tripartite graph ?

$$
E[\pm \text{triangle}] = EL \sum_{v \in B} 6_{u,v,w} = \eta^3 |A| \cdot |B| \cdot |C|
$$

wec
Can we make weaker assumptions + still get reasonable bounds ?

Density+ Regularity of set pairs :

Regularity \Rightarrow lots of $\triangle's$:

⁼ Iy-U1/C) nbrs in <

 $A \cap B$ $\frac{1}{4}$
Claim $|A^*| = (1-2\delta) |A|$ $\overline{\mathsf{C}}$ Why? (pf of claim) $A' =$ "bad" nodes wrt B $(2M-8)$ -IBI nbrs in 13) $A'' \leftarrow$ "bad" nodes wrt C (< $M-\chi$ l·ICI nbrs in C) $then$ $|A'|\leq \gamma |A|$ $\vert \cdot \vert \cdot \vert = \delta \vert \cdot \vert$ why? Consider pair ^A , B $d(A^{1} \mid B)$ < $\frac{|A^{1} \cdot I_{1} \cdot I_{B}|}{|A^{1} \cdot I_{B}|}$ = η - γ b ut $d(A, B) > \eta$ s_{0} | $d(A'B) - d(A_{1}B)$ > 8 4 we know $|B| = 8|B|$ so if $|A^1| \ge \frac{\chi}{A}$ then (A, B) not it regular contradiction ! Let A^* = A) $(A' \cup A'')$ then $|A^*|$ = $|A|$ - $|A^*|$ - $|A^*|$ \geq $|A|-20$ $|A|$ = (1-28)/A)

Do interesting graphs have regularity properties?

Yes in some sense, all graphs do

"can be approximated as small collection of rindom graphs"

Szemerdi's Regularity Lemma sometime $\sqrt{18}$ would like it to $rac{844}{6}$: have \int_{0}^{b} have \int_{0}^{b} have \int_{0}^{b} have \int_{0}^{b} and V into $V_1 \cdots V_k$ for the same on K
 V_1 to make ["] Can always equipartition nodes of $-$ (for constant k) such that all pairs (V_i,V_j) α are ϵ -regular" (most (21 - $\frac{1}{2}$ most (z1-E)
is good enough

<u>note</u> k=1 k=n trivial

Szemeré di's Regularity Lemma, no dependence on n $\forall m, \epsilon$ 20 \exists T= $T(m, \epsilon)$ st. given $G = (V, \epsilon)$ st. $|V|$ > T + cA an equipartion of V into m sets then \exists equipartition β into K sets refining A $st.$ $m \leq k \leq T$ $+$ \leq ϵ ($\frac{k}{2}$) set pairs not E-regular $\sqrt{2}$ G \Rightarrow 00 00 \uparrow 00 \uparrow 00 \uparrow 60 \uparrow 60 \uparrow $3 \cancel{\geq}$ First studied to prove that sequences of integers have long arithmetic progressions.

Application of SRL to property testing :

Given: G adjacency matrix format
Question: is G Δ -free?
desired behavior: $Queshon$; is $G - Sree$? ↳sided error if 6 is \triangle -free, output PASS $\sqrt{}$ if G $g-far$ from Δ -free, output FAIL um must delete $En²$ edges Algorithm: Do $O(1/8)$ times

pick $V_1, V_2, V_3 \in_\Gamma V$ $if \Delta$, reject + halt

Accept

 y fitn of ε only #m F3 78 St. VG St .=n \downarrow st. G is \upepsilon -far from \uparrow -free then G has $\geq \delta(\begin{matrix} n \\ 3 \end{matrix})$ distinct Δ 's Corr Algorithm has desired behavior Why ? · if \triangle -free : never reject $\sqrt{}$ \cdot if \leq -far: \geq δ (3) Δ 3 \Rightarrow each loop passes with prob \leq 1-8 so Pr[don't see ^O in any loop] \leq (1-8)^{\leq} $\leq e^{-c} \leq \frac{1}{3}$ $chote$ of c so reject with prob $\geq 2/3$ \Box

Thm	$Y \in \exists \delta$	s.t.	$Y G$	s.t.	$ V =n$
$\forall s.t.$	G	is	ϵ -far	from	\succeq -free
\exists then	G	has	$\geq \delta(\frac{n}{3})$	distinct	\searrow 's

Proof of Theorem:

Use regulatory lemma to get equipment from
$$
\frac{5}{2}V_1 \cdot V_k \cdot \frac{5}{2} \cdot \frac{5}{2}
$$
.

\n $\frac{5}{2} \leq k \leq T(\frac{5}{2}, \epsilon)$

\n $= \frac{5}{2} \cdot \frac{5}{2} \cdot \frac{5}{2}$

\nequivalent: $\frac{5}{5} \geq \frac{n}{k} \geq \frac{n}{\sqrt{5}} \geq \frac{n}{k}$

\nfor nodes

\nso that no set has $z \leq$ fraction of nodes

how? start with arbitrary equipmentthon A into
$$
\frac{5}{2}
$$
 sets

now: start with arbitrary equilibrium at
$$
1110 \le
$$
 sets
\nfor $\epsilon' = \min \{ \frac{\epsilon}{5} \} \sqrt[5]{c(\frac{\epsilon}{5})} \le$ st \le (5) pairs not ϵ' -regular

E-regular

"Clean up" G:

define $G' \equiv$ take G and i) \forall i, delete V_i 's internal edges $(if||V_i|$ small, few such edges) how $|V_{i}|$ small, few such edg
many? $\leq \frac{n}{k} \cdot n \leq \frac{\epsilon n}{s}$ [↑] sum over deg wlin V. Jomburn 2) delete edges between non regular pairs how euges betwee

many? $\leq \xi'(\frac{k}{2})$ Few such edges)
 $\frac{n}{\pi} \cdot n \le \frac{\sum n^2}{5}$
 $\frac{n}{\pi} \cdot n \le \frac{\sum n^2}{5}$

Sumover

all nodes

notween non regular pairs
 $\sum_{i=1}^{n} {n \choose 2} {n \choose k}^2 \le \frac{\sum_{i=1}^{n} {n^2} \cdot n^2}{5} = \frac{\sum n^2}{5}$
 $\frac{n}{\pi} \times \frac{n}{\pi} = \frac{\sum n^2}{10}$
 $\frac{n}{\$ nonregular edges nonregular edges per prin
pairs since $|v_x| \approx |v_y| = \frac{n}{K}$ 3) delete edges between low clensity pairs how \mathbb{R}^m between low density pairs
 $\angle \varepsilon_{15}$
 $\angle \varepsilon_{15}$
 $\angle \varepsilon_{15}$
 $\angle \frac{\varepsilon_{15}}{\sqrt{n}}$
 $\angle \frac{\varepsilon_{15}}{\sqrt{n}}$ density > upper bounded by
total to day slots for k z 2 Total deleted edges: $\leq \epsilon n^2$

But G is ϵ -far from Δ -free (must delete En² edges to make Δ -free) so G' must $shil$ have a Δlli Manppint:
In this cleaned up graph, one triangle implies manytringles! $\frac{3v}{x}$ $\frac{6}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ low \leq $\frac{1}{\sqrt{100}}$... (so \leq 1 m G¹ must connect:
 $\frac{1}{\sqrt{100}}$ (so $\frac{1}{\sqrt{100}}$ modes in 3 distinct V_i/V_jV_k Cerused internal edges) [↓] 2) regular pairs Cerused edges in non regularpairs $\begin{picture}(120,15) \put(0,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}}$ $\sum_{i=1}^{n}$ 3) high density pairs Cerased edges in low densitypairs) $\frac{1}{\sqrt{2}}$ \therefore J λ_{j} , k distinct st. $X \in V_{i,j}$ $y \in V_{j}$, $z \in V_{k}$ $V_x V_y V_x$ all $\geq \frac{2}{5}$ = η density pairs which as region! $\Rightarrow \gamma^{\Delta}(\ell_{S})$ -regular = $\frac{2M}{2} \geq \frac{\epsilon}{10}$

 Δ $counting$ lemma \Rightarrow \geq $\geq \int_{0}^{\Delta}(\frac{\epsilon}{5}) |V_{1}| |V_{3}| |V_{1}| \quad \text{as in } G$ Δ 's in G'
where $\delta^4 = (1 - \eta) \frac{n^3}{3}$ $= 5'(n)$ $\sqrt{3}$ in G where $0 = (1 - 1)\frac{3}{8}$ (1) $|V_{s}| |V_{k}|$ As in G¹

where $\delta^2 = (1-\eta)\frac{n^3}{8}$

(and thus G) $\frac{2!}{3} \frac{\xi^3}{8000} = \frac{\xi^3}{h^{100}}$ for $\delta' = 6 \delta^4(\frac{\epsilon}{5}) (T(\frac{5}{5}, \epsilon))^{-3}$ ·
第2章 (1) runtime of property tester is $O(1/\delta) \sim O(T(\xi, \epsilon')^3)$ (f) Powerful technique! $2^{2^k/\log 16}$ · similar lemma to s-canting for all constant sized subgraphs · almost "as is" can use same method for all "1st order" graph properties : $\begin{array}{c|c|c|c|c|c} \exists u_1u_2u_3...u_k & \forall v_1...v_k & R(u_1...u_kv_1...v_k) \ \hline \textbf{hodes} & \textbf{U.} & \textbf{I.} & \textbf{I.} & \textbf{I.} & \textbf{I.} \end{array}$ τ define via λ, γ τ to be gueries matrix

ie. $\forall u_1u_2u_3 \quad \exists$ ($u_1 \sim u_2$, $u_3 \sim u_3$, $u_3 \sim u_1$) $\frac{2u}{2}$
 $\frac{1}{2}$
 $\frac{2u}{2}$
 $\frac{2}{3}$

 $\frac{1}{2}$

 D more generally , H-freeness for const size It Dense graph testable properties : · I-sided error const time \approx hereditary graph properties (closed under vertex removal: Chordal, perfect, interval) difficulty: infinite set of forbidden \mathbf{v} · 2-sided error const time \approx any property that can be reduced to testing
if satisfies one of
finite # of Szemeredi
partitions Are there taster testers finite # of Szemeredi $(in$ tems of $\varepsilon)$ for partitions specific properties? maybe the reason the dependence on ^E is so bad is that the technique is too "general purpose" ? $sh(1)$ A-free can't be tested in the poly ($1/e$) (see next lecture