lesting & Correcting Linear Functions

Program Correctness : Suppose you have g $\vert \vert$ () \vert $\frac{1}{10}$ fctn $\frac{1}{10}$ Complicated $color$ highly optimized why should you trust it? "Self-Correcting" - take a program that is $correct$ on $most$ inputs $\frac{1}{3}$ trensform into program correct on all inputs. ¹¹ self-testing" - convince yourself that program is correct on most inputs You can do this for certain classes of fctns f

example: if
$$
G = \mathbb{Z}_{2}^{h}
$$
 with operation
\n $(a_{1} \cdots a_{n}) + (b_{1} \cdots b_{n}) = (a_{1}b_{1}, \dots, a_{n}b_{n})$
\nthen $(0110) + (b_{1}b_{2}b_{3}b_{4}) = (00b_{1}, 10b_{2}, 10b_{3}, 00b_{4})$
\n15 distributed uniformly if b's are
\nwhy? each coord with
\n• b's indep $\Rightarrow a_{3} \oplus b_{3} \leq$ indep

Why do we care ?

Self-Correcting (ie. rundom self-reducibility)

 $Given: 7$ st. 1 linear g s.t. $H_x[f(x) = g(x)] \ge 7/8$ (ie rundom self-reducibility)
3 linear 9 s.t. $P_x[f(x) = g(x)] \ge 7/6$
9 is $\frac{1}{3}$ is $\frac{1}{3}$ -linear
9 is $\frac{1}{3}$ -linear

 f is $\frac{1}{8}$ -linear

Compute: g(x) given oracle calls to f

 r untime : $O(log \frac{1}{P})$ calls to f

hot: $\frac{1}{\pi}\int_{\mathbb{R}^n} \mathbb{Z}_n^n$ heed n call $\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$

 $\sqrt{2}$ laim P_0 Loutput = $g(x)$ = 1- β If $Pf(y) + g(y) = Y8$ y uniform df E-close to a $Pr[\n+ (x-y) + g(x-y)] \leq Yg$ since observation
and $x-y$ uniform uniform : Pr[f(y) ⁺ f(x -y) $f(x-y) = g(x-y) = \frac{y}{8}$
 $f(y) + f(x-y) = g(y) + g(x-y)$
= answer; = g(x) $x-y$
 $(2-x^2)y$ $=$ answer, $Chernoff \implies$ majority answer is $g(x)$ with $p^{rob} \geq -\beta$ = - ^f ⁺f(x) ⁼ ^x⁺ ^f - \rightarrow g(x)

Pf of Claim 1 $\begin{array}{lll} \mathsf{let} & \mathsf{d}_{\mathsf{x}} = \mathsf{Pr}_{\mathsf{y}} \mathsf{Lf}(\mathsf{x}) & \mathsf{if} & \mathsf{f}(\mathsf{x} \mathsf{+y}) - \mathsf{f}(\mathsf{y}) \end{array} \end{array}$ truction
Of # in a row if $\alpha_x < \rho < \frac{1}{2}$ then X is p-good + g(x)=f(x) Consider matrix: all y's + F ⁼ ⁼ all
Gyment
Etine $\begin{array}{ccc} \text{picture} & \text{${\cal E}$ & \text{Fractron} & \text{${\cal E}$ & \text{Fractron} & \text{${\cal E}$ & \text{Fractron} & \text{${\cal E}$ & \text{${\cal E}$} & \text{${\cal E}$ & \text{Fractron} & \text{${\cal E}$ & \text{${\cal E}$} & \$ = = = = = $\frac{1}{2}$ = = = 0. W.
= = = = 0. W.
= = = = 0. W.
= = = = 0. W. ⁼ F = ⁼ => ⁰ . W. = = = = $\frac{1}{\alpha}$ of \pm 's V ia
 V ia fraction of $\#$ in matrix = δ
picture F CO computer in matrix = δ fraction of rows w/ $>$ c -8 \neq s $|s| \neq \frac{1}{c}$ -8 more formally : $(Markov's inequality)$ E , Fraction of rows w/ $>6.8 \neq 6$
 $(Markovls inequality)$
 $[X \times J] = \frac{1}{61}$. $\geq \frac{9}{61}$ $[f(x) \neq f(xy) - f(y)]$ $= P_{r} \int_{x,y \in G} \int f(x) = f(x+y) - f(y)$ $=$ 8 M arkov¹s $S_{0} \qquad Pr\left[\alpha_{x} > \rho\right] \leq \frac{\epsilon}{\epsilon} \frac{\delta}{\rho_{\text{c}}}\frac{\epsilon}{\epsilon}$ $(\ell \hat{g}) \cdot \delta$ **120**

Show 9 is a homomorphism (at least where "Well defined") $\begin{array}{ccccccccc}\n\text{Show} & & & \text{is} & \text{a 'homomorphism' } & & & \text{if} & \\
\text{Claim 2} & & & \text{if} & & \text{if} & \text$ (1) X ⁺ y is 2p-good (a) g(x+y) = g(x) + g(y) Pf of claim2

$$
|e+ h(x+y) \equiv g(x) + g(y)
$$

two "bad" events unlikely :

$$
Pr_{z} [g(y) + f(y+z) - f(z)] < \rho
$$
 since y is ρ -good
 $Pr_{z} [g(x) + f(x+(y+z)) - f(y+z)] < \rho$

 $sine X$ is ρ -good [↓] (y ⁺z) is uniform

Pf of Claim3 if $\exists y$ s.t. both $y + (x-y)$ are 2δ -good then claim $\lambda \implies x = y + (x-y)$ is 48-good $4 - 9(x) = 9(y) + 9(x-y)$ To show such y exists : 3

5.7. both $y + (x - y)$

m2 = $x = y$
 $x = y$
 $y = 3$

svch $y = 2$

svch $y = 3$

x $y = y$ pair off all y with(x-y) $Pr_y [y + (x-y)$ both 2δ -good] $\ge 1 - 2 \cdot \frac{8}{26} > c$ ↑ claim 1 $sine$ prob >0 , $\frac{1}{3}$ pair y , $(x-y)$ both 2δ -good ⑭ Finished proof of theorem !!

Comments only need δ $2/9$ $($ \Rightarrow 0($\frac{v_{\lambda}}{s}$) tests instead of 0($|s\rangle$ why do we care?) actually \Rightarrow $3/9$ is tight: turns out to J fetus far from linear but pass threshold" test with prob 7/9 $f(x)$ Coppersmith's example: & ⑤ 8 & ⑤ \bullet \bullet $\overline{}$ $\overline{}$ $\overline{}$ $\left\{\n \begin{array}{ccc}\n 1 & i \end{array}\n \right.$ $\left.\n \begin{array}{ccc}\n 1 & x = 1 & \text{mod}3 \\
 0 & 0 & \text{mod}3\n \end{array}\n \right\}$ f(x) ⁼ 2 $\frac{1}{3}$ fails when $x=y=1 \mod 3$ ∞ prob $\frac{2}{9}$ else pusses Closest linear fictor is $g(x) \equiv 0$ which inear from is $y(x) = 0$ wine.
disagrees with f' on $\geq \frac{2}{3}$ of pts.

more comments :

· above proof requires underlying group to de Abelian (X+y = y+x) but can prove for non-Abelian · Better constants for \mathbb{Z}_2^n ↑ why do we care? PCP constructions