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https://petapixel.com/2017/11/14/photos-new-futuristic-library-china-1-2-million-books/



Sortedness of a sequence

• Given: list  y1 y2 ...  yn

• Question: is the list sorted?

• Clearly requires n steps – must look at each yi



Sortedness of a sequence

• Given: list  y1 y2 ...  yn

• Question: can we quickly test if the list close to sorted? 



What do we mean by “close’’?

Definition:  a list of size n is e-close to sorted if can 
delete at most en values to make it sorted.  
Otherwise, e-far.

(e is given as input, e.g., e=1/5)

Sorted:  1   2   4  5    7  11  14  19  20  21  23  38  39  45
Close:    1   4  2  5    7  11  14  19  20  39  23  21  38  45  
               1   4       5    7  11  14  19  20         23        38  45
Far:       45 39 23  1 38   4    5   21  20  19   2    7  11  14
                                1         4    5                              7  11  14



Requirements for algorithm:

• Pass sorted lists 
• Fail lists that are e-far.
• Equivalently:  if list likely to pass test, can change (delete) at most e fraction of 

list  to make it sorted
    Probability of success > ¾
    
 (as usual, can boost it arbitrarily high by repeating several times and   outputting “fail” if ever see a 

“fail”, “pass” otherwise)

What if list not sorted, but not 
far? 



A first try for an algorithm:
Pick random entry and test that entry and its right 
neighbor are in the correct order

Good input type:
1   2   4  5    7  11  14  19  20  21  23  38  39  45  46 50 57 60 61 80

19  20 39  452   4

GOOD:  
Always 
passes!



First try (cont.):

• Proposed algorithm:
• Pick random i and test that yi≤yi+1

• Bad input type:
• 1,2,3,4,5,…i, 1,2,….n-i, 
• Difficult for this algorithm to find “breakpoint” 
• But other tests work well on this input…

i

yi



A second try for an algorithm:

Pick lots of random entries and pass if all in right order

Good input type:
1   2   4  5    7  11  14  19  20  21  23  38  39  45  46 50 57 60 61 80

19 232 46



A second try:
Pick lots of random entries and pass if all in right order

Bad input type:
1   2   4  5    7  11  14  19  20  21  1    2    4     5    7   11  14  19  20  21

14 194 2  



A second try:

Pick lots of random entries and pass if all in right order

Another bad input type:
2  1   5  4    11  7  19  14  21  20  38  23  45  39  50 46 60 57 80 61

14 381 5019

How 
many?

11 57



A second attempt:
• Proposed algorithm:
• Pick random i<j and test that yi≤yj

• Bad input type:
• n/2 groups of pairs of decreasing elements  
        2, 1,4,3,6,5,…,2k, 2k-1,…
• Largest monotone sequence is n/2
• must pick i,j in same group to see problem
• need W(n1/2) samples. (also 𝑂(𝑛!/#) is enough)

i

yi



A third attempt



Before we start… a minor simplification:

• Assume list is distinct (i.e. xi ¹ xj)

• Claim:  this is not really easier
• Why?

Can “virtually” append i to each xi
   x1,x2,…xn à (x1,1), (x2,2),…,(xn,n)
  e.g., 1,1,2,6,6  à (1,1),(1,2),(2,3),(6,4),(6,5)
Breaks ties without changing order

Well known trick – 
often used in parallel algorithms! 
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Bad input type:
  4 7  19  14  21  20  38  23  45  39  50 46  60  57  80  61

A super fast “random binary search” 
basic test

• Pick random i and look at value of yi 
• Do binary search for yi

• Does the binary search find 𝑦$ at location i? If not, FAIL
• Does the binary search find any inconsistencies?  If yes, FAIL

e.g., i = 9, yi =45



A test that works
• The test: 
   Test O(1/e) times:

• Pick random i
• Look at value of yi 
• Do binary search for yi

• Does the binary search find 𝑦$ at location i? If not, 
FAIL
• Does the binary search find any inconsistencies?  If 

yes, FAIL
Pass if never failed

• Running time:   O(e-1 log n) time
• Why does this work?



Behavior of the test:
• Define  index i to be good if binary search for yi successful
• O(1/e log n) time test (restated): 
• pick O(1/e) i’s and pass if they are all good

• Correctness:
• If list is sorted, then all i’s good  (uses distinctness) à test  

always passes
• If list likely to pass test, then at least (1-e)n i’s are good.
• Main observation:  good elements form increasing 

sequence
• Proof:  if i<j both good need to show yi < yj 
• let k = least common ancestor of i,j
• Search for i went left of k and search for j went 

right of k à       yi < yk <yj
• Thus  list is e-close to monotone (delete < en bad 

elements)



Requirements for algorithm:

• Pass sorted lists 
• Fail lists that are e-far.
• Equivalently:  if list likely to pass test, can change (delete) at most e fraction of 

list  to make it sorted
    Probability of success > ¾
    
 

• Can test in O(1/e log n) time
  (and can’t do any better!)



More complicated domain:  
The Boolean cube

Partial order of Boolean cube:
𝑥 ≺ 𝑦	 ⇔ ∀𝑖	𝑥$ ≤ 𝑦$

𝑓: 0,1 % → {0,1} is monotone if:
𝑥 ≺ 𝑦 ⟹ 𝑓 𝑥 ≤ 𝑓 𝑦  



Monotonicity of functions on Boolean cube
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• A function 𝑓 ∶ 0,1 % → {0,1} is monotone 
     if increasing a bit of 𝑥 does not decrease 𝑓(𝑥). 

• Violating edge:
• Edge 𝑥®𝑦 is violated by  𝑓	 if  𝑓	(𝑥) 	> 	𝑓	(𝑦).

Time complexity of property tester: 
• Today:  𝑂(𝑛/𝜀), logarithmic in the size of the input, 2%

• Newer: Θ( 𝑛/𝜀#) for nonadaptive tests, Ω 𝑛
!
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Monotonicity Test

22

Idea: Show that functions that are far from monotone violate many edges. 

Analysis

• If 𝑓 is monotone, EdgeTest always accepts. 
• If 𝑓 is 𝜀-far from monotone, will show that  ≥ 𝜀/𝑛 fraction of 

edges (i.e., &% ⋅ 2
%'!𝑛 = 𝜀2%'! edges) violated by 𝑓.

• Let 𝑉(𝑓) denote the number of edges violated by 𝑓.

     Contrapositive:  If 𝑉(𝑓) < 𝜀	2!"#, 	 	
	 𝑓 can be made monotone by changing  < 𝜀	2! values.

EdgeTest (𝑓, ε)
1. Pick 2𝑛/𝜀 edges (𝑥, 𝑦) uniformly at random from the hypercube.
2. Reject if any 𝑥, 𝑦  is violated (i.e. 𝑓 𝑥 > 𝑓(𝑦)). Otherwise,  accept.

Repair Lemma:
𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉(𝑓) values. 



Repair Lemma: Proof Idea
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Proof idea: Transform f into a monotone function by 
repairing edges in one dimension at a time.

Repair Lemma
𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉(𝑓) values. 
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Repairing Violated Edges in One Dimension
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Swapping horizontal 
dimension

Swap violated edges 1®0  in one dimension to  0®1. 

Let 𝑉$	= # of violated edges in dimension 𝑗

Enough to prove the claim for squares

i

j

Claim. Swapping in dimension 𝑖 does not increase 𝑉$ for all dimensions 𝑗 ≠ 𝑖

   



Proof of The Claim for Squares

• If no horizontal edges are violated, no action is taken. 
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Swapping horizontal 
dimension

i

j

Claim. Swapping in dimension 𝑖 does not increase 𝑉$ for all dimensions 𝑗 ≠ 𝑖

       



Proof of The Claim for Squares

• If both horizontal edges are violated, both are swapped, so the number of vertical 
violated edges does not change. 
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Swapping horizontal 
dimension

i

j

01 10

1 0 0 1

Claim. Swapping in dimension 𝑖 does not increase 𝑉$ for all dimensions 𝑗 ≠ 𝑖

       



Proof of The Claim for Squares

• Suppose one (say, top) horizontal edge is violated.
• If both bottom vertices have the same label, the vertical edges get swapped. 
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Swapping horizontal 
dimension

1 0 0 1

𝒗𝒗 𝒗𝒗

Claim. Swapping in dimension 𝑖 does not increase 𝑉$ for all dimensions 𝑗 ≠ 𝑖

       



Proof of The Claim for Squares

• Suppose one (say, top) horizontal edge is violated.
• If both bottom vertices have the same label, the vertical edges get swapped. 
• Otherwise, the bottom vertices are labeled 0®1, and the vertical violation is repaired.

28

i

j

Swapping horizontal 
dimension

1 0 0 1

10 10

Claim. Swapping in dimension 𝑖 does not increase 𝑉$ for all dimensions 𝑗 ≠ 𝑖

       



Proof of The Claim for Squares

After we perform swaps in all dimensions:
• 𝑓 becomes monotone
• # of values changed: 
	 2 ⋅ 𝑉! + 	2 ⋅ (#	violated	edges	in dim2	after	swapping dim1)

	 +	2 ⋅ (#	violated	edges	in dim3	after	swapping dim1	and	2)
	 +	… ≤ 2 ⋅ 𝑉! + 2 ⋅ 𝑉" +⋯2 ⋅ 𝑉# = 2 ⋅ 𝑉 𝑓

•     Can improve the bound by a factor of 2.
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Claim. Swapping in dimension 𝑖 does not increase 𝑉$ for all dimensions 𝑗 ≠ 𝑖

       

Repair Lemma
𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉(𝑓) values. 



Testing if a Functions 𝑓 ∶ 0,1 6 → {0,1} is  monotone
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Monotone or 
𝜀-far from monotone?

 O(n/𝜀) time
 (logarithmic in the size of the input)
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Testing Properties of High-Dimensional Functions

In polylogarithmic time, we can test a  large class of properties of functions 
𝑓: 1, … , 𝑛 ! → ℝ, including:

• Lipschitz property 
• Bounded-derivative properties 
• Unateness
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