Monotonicity testing

Ronitt Rubinfeld 6.5240 Sublinear Time Algorithms

(slides on testing monotonicity of functions $f: \{0,1\}^n \rightarrow \{0,1\}$ from Sofya
Raskhodnikova)

Alphabetized?

Dillon

Sortedness of a sequence

- Given: list $y_1 y_2 ... y_n$
- Question: is the list sorted?
- Clearly requires *n* steps must look at each *y*ⁱ

Sortedness of a sequence

- Given: list $y_1 y_2 ... y_n$
- Question: can we quickly test if the list close to sorted?

What do we mean by "close"?

Definition: a list of size *n* is *ε*-close to sorted if can delete at most e*n* values to make it sorted. Otherwise, e-far.

(ϵ is given as input, e.g., $\epsilon=1/5$)

Sorted: 1 2 4 5 7 11 14 19 20 21 23 38 39 45 Close: 1 4 2 5 7 11 14 19 20 39 23 21 38 45 1 4 5 7 11 14 19 20 23 38 45 Far: 45 39 23 1 38 4 5 21 20 19 2 7 11 14 1 4 5 7 11 14

Requirements for algorithm:

• Pass sorted lists

What if list not sorted, but not far?

- Fail lists that are ε -far.
	- Equivalently: if list likely to pass test, can change (delete) at most e fraction of list to make it sorted

Probability of success $> \frac{3}{4}$

(as usual, can boost it arbitrarily high by repeating several times and outputting "fail" if ever see a "fail", "pass" otherwise)

A first try for an algorithm:

Pick *random entry* and test that *entry and its right neighbor* are in the *correct order*

First try (cont.):

- Proposed algorithm:
	- Pick random *i* and test that *yi ≤yi+1*
- Bad input type:
	- 1,2,3,4,5,…i, 1,2,….n-i,
	- Difficult for this algorithm to find "breakpoint"
	- But other tests work well on this input…

A second try for an algorithm:

Pick lots of random entries and pass if all in right order

Good input type: 1 2 4 5 7 11 14 19 20 21 23 38 39 45 46 50 57 60 61 80

A second try:

Pick lots of random entries and pass if all in right order

Bad input type: 1 2 4 5 7 11 14 19 20 21 1 2 4 5 7 11 14 19 20 21

A second try:

Pick lots of random entries and pass if all in right order

Another bad input type:

2 1 5 4 11 7 19 14 21 20 38 23 45 39 50 46 60 57 80 61

A second attempt:

- Proposed algorithm:
	- Pick random *i<j* and test that *yi ≤yj*
- Bad input type:
	- *n*/2 groups of pairs of decreasing elements 2, 1,4,3,6,5,…,2k, 2k-1,…
	- Largest monotone sequence is n/2
	- must pick *i,j* in same group to see problem
	- need $\Omega(n^{1/2})$ samples. (also $O(n^{1/2})$ is enough)

A third attempt

Before we start… a minor simplification:

- Assume list is distinct (i.e. $x_i \neq x_j$)
- Claim: this is not really easier
	- Why? Can "virtually" append *i* to each *xi* $x_1, x_2, \ldots x_n \rightarrow (x_1, 1), (x_2, 2), \ldots, (x_n, n)$ *e.g., 1,1,2,6,6* à *(1,1),(1,2),(2,3),(6,4),(6,5)* Breaks ties without changing order

Well known trick – often used in parallel algorithms!

A super fast "random binary search" basic test

• Pick random i and look at value of *y*ⁱ

e.g., $i = 9$, $y_i = 45$

- Do binary search for *y*ⁱ
	- Does the binary search find y_i at location i? If not, FAIL
	- Does the binary search find any inconsistencies? If yes, FAIL

A test that works

- The test:
	- Test $O(1/\epsilon)$ times:
		- Pick random i
		- Look at value of *y*ⁱ
		- Do binary search for *y*ⁱ
			- Does the binary search find y_i at location i? If not, FAIL
			- Does the binary search find any inconsistencies? If yes, FAIL

Pass if never failed

- Running time: $O(\varepsilon^{-1} \log n)$ time
- Why does this work?

Behavior of the test:

- Define index *i* to be good if binary search for y_i successful
- $O(1/\varepsilon \log n)$ time test (restated):
	- pick $O(1/\epsilon)$ *i*'s and pass if they are all good
- Correctness:
	- If list is sorted, then all i's good (uses distinctness) \rightarrow test always passes
	- If list likely to pass test, then at least (1-e)*n* i's are good.
		- Main observation: good elements form increasing sequence
			- Proof: if i<j both good need to show $y_i < y_i$
				- \bullet let k = least common ancestor of i,j
				- Search for i went left of k and search for j went right of $k \rightarrow y_i < y_k < y_j$
		- Thus list is e-close to monotone (delete < e*n* bad elements)

Requirements for algorithm:

- Pass sorted lists
- Fail lists that are e-far.
	- Equivalently: if list likely to pass test, can change (delete) at most e fraction of list to make it sorted

Probability of success > ¾

• Can test in $O(1/\varepsilon \log n)$ time

(and can't do any better!)

More complicated domain: The Boolean cube

Partial order of Boolean cube: $x \prec y \Leftrightarrow (\forall i \ x_i \leq y_i)$ $f: \{0,1\}^n \to \{0,1\}$ is **monotone** if: $x \prec y \Longrightarrow f(x) \leq f(y)$

Monotonicity of functions on Boolean cube 1

- A function $f : \{0,1\}^n \rightarrow \{0,1\}$ is monotone if increasing a bit of x does not decrease $f(x)$.
- Violating edge:
	- Edge $x \rightarrow y$ is violated by f if $f(x) > f(y)$.

Time complexity of property tester:

- Today: $O(n/\varepsilon)$, logarithmic in the size of the input, 2^n
- Newer: $\Theta(\sqrt{n}/\varepsilon^2)$ for nonadaptive tests, $\Omega\left(n\right)$! 3

Monotonicity Test

Idea: Show that functions that are far from monotone violate many edges.

EdgeTest (f, ε)

- 1. Pick $2n/\varepsilon$ edges (x, y) uniformly at random from the hypercube.
- **2. Reject** if any (x, y) is violated (i.e. $f(x) > f(y)$). Otherwise, **accept**.

Analysis

- If f is monotone, EdgeTest always accepts.
- If f is ε -far from monotone, will show that $\geq \varepsilon/n$ fraction of edges (i.e., $\frac{\varepsilon}{n} \cdot 2^{n-1} n = \varepsilon 2^{n-1}$ edges) violated by f.

• Let $V(f)$ denote the number of edges violated by f.

Contrapositive: If $V(f) < \varepsilon 2^{n-1}$,

f can be made monotone by changing $\langle \varepsilon \rangle$ values.

Repair Lemma:

f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Repair Lemma: Proof Idea

Repair Lemma

can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Proof idea: Transform *f* into a monotone function by repairing edges in one dimension at a time.

Repairing Violated Edges in One Dimension

Swap violated edges $1 \rightarrow 0$ in one dimension to $0 \rightarrow 1$.

Let V_i = # of violated edges in dimension j

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$

Enough to prove the claim for squares

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$

• If no horizontal edges are violated, no action is taken.

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$

• If both horizontal edges are violated, both are swapped, so the number of vertical violated edges does not change.

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$

- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$

- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.
- Otherwise, the bottom vertices are labeled $0\rightarrow 1$, and the vertical violation is repaired.

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$

After we perform swaps in all dimensions:

- \bullet f becomes monotone
- # of values changed:

 $2 \cdot V_1 + 2 \cdot (#$ violated edges in dim 2 after swapping dim 1)

 $+ 2 \cdot (#$ violated edges in dim 3 after swapping dim 1 and 2)

 $+ ... \leq 2 \cdot V_1 + 2 \cdot V_2 + ... 2 \cdot V_n = 2 \cdot V(f)$

Repair Lemma

can be made monotone by changing $\leq 2 \cdot V(f)$ values.

• Can improve the bound by a factor of 2.

Testing if a Functions $f: \{0,1\}^n \rightarrow \{0,1\}$ is monotone

Monotone or ε -far from monotone?

 $O(n/\varepsilon)$ time (logarithmic in the size of the input)

In polylogarithmic time, we can test a large class of properties of functions $f: \{1, ..., n\}^d \to \mathbb{R}$, including:

- Lipschitz property
- Bounded-derivative properties
- Unateness