# Monotonicity testing

Ronitt Rubinfeld 6.5240 Sublinear Time Algorithms

(slides on testing monotonicity of functions  $f: \{0,1\}^n \rightarrow \{0,1\}$  from Sofya Raskhodnikova)

### Alphabetized?



a na feli feli na feli

d water and the second for a local scheme of a second on the first and the first of the second of the

111 min

#### Sortedness of a sequence

- Given: list  $y_1 y_2 \dots y_n$
- Question: is the list sorted?
- Clearly requires n steps must look at each y<sub>i</sub>

#### Sortedness of a sequence

- Given: list  $y_1 y_2 \dots y_n$
- Question: can we quickly test if the list close to sorted?

What do we mean by "close"?

Definition: a list of size *n* is  $\varepsilon$ -close to sorted if can delete at most  $\varepsilon n$  values to make it sorted. Otherwise,  $\varepsilon$ -far.

( $\epsilon$  is given as input, e.g.,  $\epsilon$ =1/5)

 Sorted:
 1
 2
 4
 5
 7
 11
 14
 19
 20
 21
 23
 38
 39
 45

 Close:
 1
 4
 2
 5
 7
 11
 14
 19
 20
 39
 23
 21
 38
 45

 1
 4
 5
 7
 11
 14
 19
 20
 39
 23
 21
 38
 45

 Far:
 45
 39
 23
 1
 38
 4
 5
 21
 20
 19
 2
 7
 11
 14

 1
 4
 5
 21
 20
 19
 2
 7
 11
 14

 1
 4
 5
 7
 11
 14
 5
 7
 11
 14

#### Requirements for algorithm:

• Pass sorted lists

What if list not sorted, but not far?

- Fail lists that are  $\epsilon\text{-far.}$ 
  - Equivalently: if list likely to pass test, can change (delete) at most  $\epsilon$  fraction of list to make it sorted

Probability of success > 3/4

(as usual, can boost it arbitrarily high by repeating several times and outputting "fail" if ever see a "fail", "pass" otherwise)

#### A first try for an algorithm:

Pick *random entry* and test that *entry and its right neighbor* are in the *correct order* 



## First try (cont.):

- Proposed algorithm:
  - Pick random *i* and test that  $y_i \le y_{i+1}$
- Bad input type:
  - 1,2,3,4,5,...i, 1,2,....n-i,
  - Difficult for this algorithm to find "breakpoint"
  - But other tests work well on this input...



#### A second try for an algorithm:

#### Pick lots of random entries and pass if all in right order

#### Good input type: 1 2 4 5 7 11 14 19 20 21 23 38 39 45 46 50 57 60 61 80



A second try:

Pick lots of random entries and pass if all in right order

Bad input type: 1 2 4 5 7 11 14 19 20 21 1 2 4 5 7 11 14 19 20 21



#### A second try:

#### Pick lots of random entries and pass if all in right order

## How many?

#### Another bad input type:

2 1 5 4 11 7 19 14 21 20 38 23 45 39 50 46 60 57 80 61



### A second attempt:

- Proposed algorithm:
  - Pick random *i*<*j* and test that  $y_i \le y_i$
- Bad input type:
  - n/2 groups of pairs of decreasing elements
    2, 1,4,3,6,5,...,2k, 2k-1,...
  - Largest monotone sequence is n/2
  - must pick *i*,*j* in same group to see problem
  - need  $\Omega(n^{1/2})$  samples. (also  $O(n^{1/2})$  is enough)



A third attempt

#### Before we start... a minor simplification:

- Assume list is distinct (i.e.  $x_i \neq x_j$ )
- Claim: this is not really easier
  - Why?

Can "virtually" append *i* to each  $x_i$   $x_1, x_2, ..., x_n \rightarrow (x_1, 1), (x_2, 2), ..., (x_n, n)$  *e.g.*, 1,1,2,6,6  $\rightarrow (1,1), (1,2), (2,3), (6,4), (6,5)$ Breaks ties without changing order

Well known trick – often used in parallel algorithms!

#### A super fast "random binary search" basic test

Pick random i and look at value of y<sub>i</sub>

e.g., i = 9, y<sub>i</sub> =45

- Do binary search for y<sub>i</sub>
  - Does the binary search find  $y_i$  at location i? If not, FAIL
  - Does the binary search find any inconsistencies? If yes, FAIL



#### A test that works

- The test:
  - Test O( $1/\epsilon$ ) times:
    - Pick random i
    - Look at value of y<sub>i</sub>
    - Do binary search for y<sub>i</sub>
      - Does the binary search find  $y_i$  at location i? If not, FAIL
      - Does the binary search find any inconsistencies? If yes, FAIL

Pass if never failed

- Running time:  $O(\epsilon^{-1} \log n)$  time
- Why does this work?

### Behavior of the test:

- Define index *i* to be good if binary search for y<sub>i</sub> successful
- $O(1/\epsilon \log n)$  time test (restated):
  - pick  $O(1/\varepsilon)$  i's and pass if they are all good
- Correctness:
  - If list is sorted, then all i's good (uses distinctness) → test always passes
  - If list likely to pass test, then at least  $(1-\varepsilon)n$  i's are good.
    - Main observation: good elements form increasing sequence
      - Proof: if i<j both good need to show  $y_i < y_j$ 
        - let k = least common ancestor of i,j
        - Search for i went left of k and search for j went right of k → y<sub>i</sub> < y<sub>k</sub> < y<sub>j</sub>
    - Thus list is ε-close to monotone (delete < εn bad elements)</li>

### Requirements for algorithm:

- Pass sorted lists
- Fail lists that are  $\epsilon$ -far.
  - Equivalently: if list likely to pass test, can change (delete) at most  $\epsilon$  fraction of list to make it sorted

Probability of success > <sup>3</sup>/<sub>4</sub>

• Can test in  $O(1/\epsilon \log n)$  time

(and can't do any better!)

### More complicated domain: The Boolean cube

Partial order of Boolean cube:  $x \prec y \iff (\forall i \ x_i \le y_i)$   $f: \{0,1\}^n \rightarrow \{0,1\}$  is monotone if:  $x \prec y \Longrightarrow f(x) \le f(y)$ 



## Monotonicity of functions on Boolean cube

- A function f : {0,1}<sup>n</sup> → {0,1} is monotone
   if increasing a bit of x does not decrease f(x).
- Violating edge:
  - Edge  $x \rightarrow y$  is violated by f if f(x) > f(y).

Time complexity of property tester:

- Today:  $O(n/\varepsilon)$ , logarithmic in the size of the input,  $2^n$
- Newer:  $\Theta(\sqrt{n}/\varepsilon^2)$  for nonadaptive tests,  $\Omega\left(n^{\frac{1}{3}}\right)$





#### Monotonicity Test

Idea: Show that functions that are far from monotone violate many edges.

EdgeTest  $(f, \varepsilon)$ 

- 1. Pick  $2n/\epsilon$  edges (x, y) uniformly at random from the hypercube.
- **2.** Reject if any (x, y) is violated (i.e. f(x) > f(y)). Otherwise, accept.

#### Analysis

- If f is monotone, EdgeTest always accepts.
- If f is  $\varepsilon$ -far from monotone, will show that  $\geq \varepsilon/n$  fraction of edges (i.e.,  $\frac{\varepsilon}{n} \cdot 2^{n-1}n = \varepsilon 2^{n-1}$  edges) violated by f.

• Let V(f) denote the number of edges violated by f.

Contrapositive: If  $V(f) < \varepsilon 2^{n-1}$ ,

f can be made monotone by changing  $< \varepsilon 2^n$  values.

**Repair Lemma:** 

f can be made monotone by changing  $\leq 2 \cdot V(f)$  values.

Repair Lemma: Proof Idea

**Repair Lemma** 

f can be made monotone by changing  $\leq 2 \cdot V(f)$  values.

Proof idea: Transform *f* into a monotone function by repairing edges in one dimension at a time.



#### Repairing Violated Edges in One Dimension

Swap violated edges  $1 \rightarrow 0$  in one dimension to  $0 \rightarrow 1$ .



Let  $V_i$  = # of violated edges in dimension j

**Claim.** Swapping in dimension *i* does not increase  $V_i$  for all dimensions  $j \neq i$ 

Enough to prove the claim for squares

**Claim.** Swapping in dimension *i* does not increase  $V_i$  for all dimensions  $j \neq i$ 



• If no horizontal edges are violated, no action is taken.

**Claim.** Swapping in dimension *i* does not increase  $V_i$  for all dimensions  $j \neq i$ 



• If both horizontal edges are violated, both are swapped, so the number of vertical violated edges does not change.

**Claim.** Swapping in dimension *i* does not increase  $V_i$  for all dimensions  $j \neq i$ 



- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.

Claim. Swapping in dimension *i* does not increase  $V_i$  for all dimensions  $j \neq i$ 



- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.
- Otherwise, the bottom vertices are labeled  $0 \rightarrow 1$ , and the vertical violation is repaired.

**Claim.** Swapping in dimension *i* does not increase  $V_i$  for all dimensions  $j \neq i$ 



After we perform swaps in all dimensions:

- *f* becomes monotone
- # of values changed:

 $2 \cdot V_1 + 2 \cdot (\# \text{ violated edges in dim 2 after swapping dim 1})$ 

 $+2 \cdot (\# \text{ violated edges in dim 3 after swapping dim 1 and 2})$ 

+ ...  $\leq 2 \cdot V_1 + 2 \cdot V_2 + \cdots 2 \cdot V_n = 2 \cdot V(f)$ 

#### Repair Lemma

f can be made monotone by changing  $\leq 2 \cdot V(f)$  values.

• Can improve the bound by a factor of 2.

Testing if a Functions  $f : \{0,1\}^n \rightarrow \{0,1\}$  is monotone



Monotone or  $\varepsilon$ -far from monotone?

 $O(n/\varepsilon)$  time (logarithmic in the size of the input) In polylogarithmic time, we can test a large class of properties of functions  $f: \{1, ..., n\}^d \to \mathbb{R}$ , including:



- Lipschitz property
- Bounded-derivative properties
- Unateness