
Monotonicity testing
Ronitt Rubinfeld

6.5240 Sublinear Time Algorithms

(slides on testing monotonicity of functions 𝑓: {0,1}! → {0,1}	from Sofya
Raskhodnikova)

Alphabetized?

https://petapixel.com/2017/11/14/photos-new-futuristic-library-china-1-2-million-books/

Sortedness of a sequence

• Given: list y1 y2 ... yn

• Question: is the list sorted?

• Clearly requires n steps – must look at each yi

Sortedness of a sequence

• Given: list y1 y2 ... yn

• Question: can we quickly test if the list close to sorted?

What do we mean by “close’’?

Definition: a list of size n is e-close to sorted if can
delete at most en values to make it sorted.
Otherwise, e-far.

(e is given as input, e.g., e=1/5)

Sorted: 1 2 4 5 7 11 14 19 20 21 23 38 39 45
Close: 1 4 2 5 7 11 14 19 20 39 23 21 38 45
 1 4 5 7 11 14 19 20 23 38 45
Far: 45 39 23 1 38 4 5 21 20 19 2 7 11 14
 1 4 5 7 11 14

Requirements for algorithm:

• Pass sorted lists
• Fail lists that are e-far.
• Equivalently: if list likely to pass test, can change (delete) at most e fraction of

list to make it sorted
 Probability of success > ¾

 (as usual, can boost it arbitrarily high by repeating several times and outputting “fail” if ever see a

“fail”, “pass” otherwise)

What if list not sorted, but not
far?

A first try for an algorithm:
Pick random entry and test that entry and its right
neighbor are in the correct order

Good input type:
1 2 4 5 7 11 14 19 20 21 23 38 39 45 46 50 57 60 61 80

19 20 39 452 4

GOOD:
Always
passes!

First try (cont.):

• Proposed algorithm:
• Pick random i and test that yi≤yi+1

• Bad input type:
• 1,2,3,4,5,…i, 1,2,….n-i,
• Difficult for this algorithm to find “breakpoint”
• But other tests work well on this input…

i

yi

A second try for an algorithm:

Pick lots of random entries and pass if all in right order

Good input type:
1 2 4 5 7 11 14 19 20 21 23 38 39 45 46 50 57 60 61 80

19 232 46

A second try:
Pick lots of random entries and pass if all in right order

Bad input type:
1 2 4 5 7 11 14 19 20 21 1 2 4 5 7 11 14 19 20 21

14 194 2

A second try:

Pick lots of random entries and pass if all in right order

Another bad input type:
2 1 5 4 11 7 19 14 21 20 38 23 45 39 50 46 60 57 80 61

14 381 5019

How
many?

11 57

A second attempt:
• Proposed algorithm:
• Pick random i<j and test that yi≤yj

• Bad input type:
• n/2 groups of pairs of decreasing elements
 2, 1,4,3,6,5,…,2k, 2k-1,…
• Largest monotone sequence is n/2
• must pick i,j in same group to see problem
• need W(n1/2) samples. (also 𝑂(𝑛!/#) is enough)

i

yi

A third attempt

Before we start… a minor simplification:

• Assume list is distinct (i.e. xi ¹ xj)

• Claim: this is not really easier
• Why?

Can “virtually” append i to each xi
 x1,x2,…xn à (x1,1), (x2,2),…,(xn,n)
 e.g., 1,1,2,6,6 à (1,1),(1,2),(2,3),(6,4),(6,5)
Breaks ties without changing order

Well known trick –
often used in parallel algorithms!

23 6039 50

Bad input type:
 4 7 19 14 21 20 38 23 45 39 50 46 60 57 80 61

A super fast “random binary search”
basic test

• Pick random i and look at value of yi
• Do binary search for yi

• Does the binary search find 𝑦$ at location i? If not, FAIL
• Does the binary search find any inconsistencies? If yes, FAIL

e.g., i = 9, yi =45

A test that works
• The test:
 Test O(1/e) times:

• Pick random i
• Look at value of yi
• Do binary search for yi

• Does the binary search find 𝑦$ at location i? If not,
FAIL
• Does the binary search find any inconsistencies? If

yes, FAIL
Pass if never failed

• Running time: O(e-1 log n) time
• Why does this work?

Behavior of the test:
• Define index i to be good if binary search for yi successful
• O(1/e log n) time test (restated):
• pick O(1/e) i’s and pass if they are all good

• Correctness:
• If list is sorted, then all i’s good (uses distinctness) à test

always passes
• If list likely to pass test, then at least (1-e)n i’s are good.
• Main observation: good elements form increasing

sequence
• Proof: if i<j both good need to show yi < yj
• let k = least common ancestor of i,j
• Search for i went left of k and search for j went

right of k à yi < yk <yj
• Thus list is e-close to monotone (delete < en bad

elements)

Requirements for algorithm:

• Pass sorted lists
• Fail lists that are e-far.
• Equivalently: if list likely to pass test, can change (delete) at most e fraction of

list to make it sorted
 Probability of success > ¾

• Can test in O(1/e log n) time
 (and can’t do any better!)

More complicated domain:
The Boolean cube

Partial order of Boolean cube:
𝑥 ≺ 𝑦	 ⇔ ∀𝑖	𝑥$ ≤ 𝑦$

𝑓: 0,1 % → {0,1} is monotone if:
𝑥 ≺ 𝑦 ⟹ 𝑓 𝑥 ≤ 𝑓 𝑦

Monotonicity of functions on Boolean cube

21

• A function 𝑓 ∶ 0,1 % → {0,1} is monotone
 if increasing a bit of 𝑥 does not decrease 𝑓(𝑥).

• Violating edge:
• Edge 𝑥®𝑦 is violated by 𝑓	 if 𝑓	(𝑥) 	> 	𝑓	(𝑦).

Time complexity of property tester:
• Today: 𝑂(𝑛/𝜀), logarithmic in the size of the input, 2%

• Newer: Θ(𝑛/𝜀#) for nonadaptive tests, Ω 𝑛
!
"

0

0 0

01

1

1

1

1

1 0

00

0

1

1

monotone

"
#
-far from monotone

Monotonicity Test

22

Idea: Show that functions that are far from monotone violate many edges.

Analysis

• If 𝑓 is monotone, EdgeTest always accepts.
• If 𝑓 is 𝜀-far from monotone, will show that ≥ 𝜀/𝑛 fraction of

edges (i.e., &% ⋅ 2
%'!𝑛 = 𝜀2%'! edges) violated by 𝑓.

• Let 𝑉(𝑓) denote the number of edges violated by 𝑓.

 Contrapositive: If 𝑉(𝑓) < 𝜀	2!"#, 	 	
	 𝑓 can be made monotone by changing < 𝜀	2! values.

EdgeTest (𝑓, ε)
1. Pick 2𝑛/𝜀 edges (𝑥, 𝑦) uniformly at random from the hypercube.
2. Reject if any 𝑥, 𝑦 is violated (i.e. 𝑓 𝑥 > 𝑓(𝑦)). Otherwise, accept.

Repair Lemma:
𝑓 can be made monotone by changing ≤ 2 ⋅ 𝑉(𝑓) values.

Repair Lemma: Proof Idea

23

Proof idea: Transform f into a monotone function by
repairing edges in one dimension at a time.

Repair Lemma
𝑓 can be made monotone by changing ≤ 2 ⋅ 𝑉(𝑓) values.

24

Repairing Violated Edges in One Dimension
0 0 0 0

1

1

1

0

0

0

0

0

1

1

0

1

Swapping horizontal
dimension

Swap violated edges 1®0 in one dimension to 0®1.

Let 𝑉$	= # of violated edges in dimension 𝑗

Enough to prove the claim for squares

i

j

Claim. Swapping in dimension 𝑖 does not increase 𝑉$ for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• If no horizontal edges are violated, no action is taken.

25

Swapping horizontal
dimension

i

j

Claim. Swapping in dimension 𝑖 does not increase 𝑉$ for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• If both horizontal edges are violated, both are swapped, so the number of vertical
violated edges does not change.

26

Swapping horizontal
dimension

i

j

01 10

1 0 0 1

Claim. Swapping in dimension 𝑖 does not increase 𝑉$ for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• Suppose one (say, top) horizontal edge is violated.
• If both bottom vertices have the same label, the vertical edges get swapped.

27

i

j

Swapping horizontal
dimension

1 0 0 1

𝒗𝒗 𝒗𝒗

Claim. Swapping in dimension 𝑖 does not increase 𝑉$ for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• Suppose one (say, top) horizontal edge is violated.
• If both bottom vertices have the same label, the vertical edges get swapped.
• Otherwise, the bottom vertices are labeled 0®1, and the vertical violation is repaired.

28

i

j

Swapping horizontal
dimension

1 0 0 1

10 10

Claim. Swapping in dimension 𝑖 does not increase 𝑉$ for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

After we perform swaps in all dimensions:
• 𝑓 becomes monotone
• # of values changed:
	 2 ⋅ 𝑉! + 	2 ⋅ (#	violated	edges	in dim2	after	swapping dim1)

	 +	2 ⋅ (#	violated	edges	in dim3	after	swapping dim1	and	2)
	 +	… ≤ 2 ⋅ 𝑉! + 2 ⋅ 𝑉" +⋯2 ⋅ 𝑉# = 2 ⋅ 𝑉 𝑓

• Can improve the bound by a factor of 2.

29

Claim. Swapping in dimension 𝑖 does not increase 𝑉$ for all dimensions 𝑗 ≠ 𝑖

Repair Lemma
𝑓 can be made monotone by changing ≤ 2 ⋅ 𝑉(𝑓) values.

Testing if a Functions 𝑓 ∶ 0,1 6 → {0,1} is monotone

30

Monotone or
𝜀-far from monotone?

 O(n/𝜀) time
 (logarithmic in the size of the input)

0

0 0

01

1

1

1

1

1 0

00

0

1

1

monotone

"
#
-far from monotone

Testing Properties of High-Dimensional Functions

In polylogarithmic time, we can test a large class of properties of functions
𝑓: 1, … , 𝑛 ! → ℝ, including:

• Lipschitz property
• Bounded-derivative properties
• Unateness

31

1
2

x y

