
6.5240 Sublinear Time Algorithms September 4, 2024

Lecture 1
Lecturer: Ronitt A. Rubinfeld Scribe: Alek Westover

The content of this class is follows:

• A brief discussion in Section 1 of a very simple sublinear time algorithm for estimating the
diameter of a point set under some metric.

• A more involved discussion in Section 2 of sublinear time algorithms for estimating the average
degree of a graph.

1 A Simple Example: Estimating the Diameter

In this section we give a simple sublinear time algorithm for the following problem.

2-Approximate Diameter Problem

• Input:
√
n ×

√
n matrix D encoding a metric with Dij storing the distance between

points i and j.

• Output: A value Di∗j∗ satisfying Di∗j∗ ≥ maxij Dij/2.

Remark “D encodes a metric” means thatD satisfies the triangle inequality (i.e., Dij+Djk ≥ Dik

for all i, j, k) and symmetry (i.e., Dij = Dji for all i, j). Also, note that we cannot hope to exactly
compute the diameter in sublinear time. As a specific counter example, the following two distance
metrics cannot be reliably distinguished in sublinear time:

• Dij = 100 for all i, j.

• Dij = 100 for all i, j, except that for one random pair of distinct points i∗, j∗ we have Di∗j∗ =
Dj∗i∗ = 101.

This motivates settling for an approximation to the diameter.

Now we give an algorithm to solve the 2-Approximate Diameter Problem.

Algorithm to 2-Approximate the Diameter:
Output maxk D1k.

Proposition 1 The proposed algorithm outputs a 2-approximation of the diameter in time O(
√
n).

Proof The algorithm scans one row of the matrix; this requires time O(
√
n). Now, fix i, j

maximizing Di,j . By the triangle inequality and symmetry we have:

Dij ≤ Di1 +Dj1 ≤ 2max
k

D1k.

That is, our algorithm outputs a value which is a 2-approximation of the diameter.

1

2 A More Complicated Example:
Estimating the Average Degree of a Graph

Now we turn to a harder problem: estimating the average degree of a graph. More formally, the
problem is described as follows:

Average Degree Estimation Problem

• Parameters: We are given a confidence parameter δ and an approximation pa-
rameter ε, which specify our allowed failure probability and allowed multiplicative ap-
proximation error.

• Input: an n vertex m edge graph, encoded as an adjacency list (i.e., we can look up
the j-th neighbor of a vertex v in constant time), along a list mapping vertices to their
degrees (i.e., we can look up deg(v) for any v in constant time).

• Output: A value d̃ satisfying

Pr[|d̃− d| ≤ εd] ≥ 1− δ,

where

d =
1

n

∑
u∈V

deg(u) = 2m/n.

Remark We generally won’t optimize δ too much, because for most problems we can boost the
success probability by independent repetitions of our algorithm.

Obstacles and Lower Bounds.
One natural approach to estimating the degree is to sample random vertices and average their
degrees. This gives an unbiased estimator for the average degree (i.e., this estimator has the
correct expectation). However, the variance of this estimator can be extremely bad. For
instance, suppose your graph was a star. Then, the vast majority of the time our average
degree estimate would be 1, and very rarely we would give an extremely large estimate of
the average degree. So the naive sampling approach doesn’t work very well. This shows that
sampling might not be a good estimation algorithm.

Now we show some lower bounds against any algorithm. These lower bounds will motivate
us to refine our problem statement to make the problem more tractable (by avoiding these cases
where we can’t do anything interesting).

The Ultra-Sparse Lower Bound: Ω(n) queries are necessary to distinguish between the
empty graph and a graph with a single edge.

Average Degree 2 Example: Let G1 be an n cycle. Let G2 be an n−
√
2εn cycle union a√

2εn clique (assume that these quantities are integers). The average degree in G1 is 2, whereas
the average degree in G2 is approximately (up to low order terms):

1

n
(2(n−

√
2εn) +

√
2εn · (

√
2εn− 1)) ≈ 2(1 + ε).

However, distinguishing between G1, G2 is difficult. Random sampling requires Ω(
√

n/ε) tries
(in expectation) to obtain a high degree vertex in G2, or to be somewhat confident in G1 that

2

there are no high degree vertices. One might hope to find (or rule out the existence of) a
high degree vertex faster than random sampling using the connectivity structure of the graph.
Unfortunately, traversing o(n) edges in the cycle will not help find high degree vertices, because
cycles of distinct lengths locally look identical.

Handling the Lower Bounds We will assume our way out of these difficulties. Specifically
we will assume d > 1; this gets rid of the ultra-sparse lower bound. We still should be mindful
of the second lower bound however.

The average degree 2 obstacle presented above, along with the example of a star, highlight why
the naive sampling based approach doesn’t work: the variance is too high. However, if we assume
that the degrees lie in a range of bounded multiplicative width then we can control the variance.
Specifically, we will show:

Proposition 2 Fix ε, δ > 0,∆ ∈ N. Assume each vertex v in G has degree in the range [∆, 10∆].
There is a randomized algorithm with running time O(ε−2 ln(1/δ)) that, with probability at least
1− δ, outputs a value d̃ ∈ [(1− ε)d, (1 + ε)d], where d denotes the average degree of G.

Proof Set k = 50
ε2 ln(2/δ).

Our algorithm is as follows:

1. Sample vertices w1, . . . , wk uniformly and independently at random from V .

2. Output d̃ = 1
k

∑k
i=1 deg(wi).

This algorithm clearly has the advertised running time; Note that there is no dependence on ∆ or
n in the running time — this is great! Now, we analyze the correctness of this procedure. First we
analyze the expectation of our estimate.

Claim 3 E[d̃] = d.

Proof We use linearity of expectation.

E[d̃] = E

[
1

k

k∑
i=1

deg(wi)

]
= E[deg(w1)] = d.

Now we analyze the variance of our algorithm. We will use the following fact.

Fact 4 (Chernoff Bound) Let Y1, . . . , Yk be independent random variables with 0 ≤ Yi ≤ 1 deter-

ministically. Define Y =
∑k

i=1 Yi. Then, for any b ≥ 1 we have

Pr[|Y − E[Y]| > b] ≤ 2e−2b2/k.

To apply the Chernoff bound in our setting, we need to first normalize the degrees. Define

Zi =
deg(vi)

10∆
, Z =

k∑
i=1

Zi =
k

10∆
d̃.

By our assumed bound on the degrees we have Zi ∈ [0, 1] for all i. Now, using the Chernoff bound
(Theorem 4) we have:

Pr[|Z − E[Z]| > k

10∆
εd] ≤ 2e−2 k2

100∆2 ε2(d)2/k (1)

3

Applying the bound d ≥ ∆ — which holds because the average degree is at least the lower bound
on degree — in Equation (1) gives:

Pr[|Z − E[Z]| > k

10∆
εd] ≤ 2e−kε2/50 ≤ 2e−((50/ε2) ln(2/δ))ε2/50 ≤ 2e− ln(2/δ) = δ. (2)

Finally, observe that by Theorem 3 we have

|Z − E[Z]| > k

10∆
εd ⇐⇒ |d̃− d| > εd.

The moral of the story is that bounded random variables have bounded variance.

4

