Lecture 14

Lecturer: Ronitt Rubinfeld Scribe: Manya Bansal

In this class we consider a new model: given a Domain D and the ability to sample elements of this domain using a sampler P , we would like to learn the underlying distribution of the domain. In this model, the size of the domain, i.e. $|D| = n$, is known, and we would like to achieve sublinear sample complexity in *n*.

For the remainder of the class, we describe a tester for the case when P is uniformly distributed on D, denoted by U_D .

1 Testing Uniformity

We would like to define a tester for P such that:

- If $P = U_D$, then the tester outputs *PASS*.
- If $dist(P, U_D) > \epsilon$, then the tester outputs FAIL.

There are several choices for $dist(P, U_D)$, for example we can pick one of the following:

- l_1 -distance: $||p q||_1 = \sum_{i \in D} |p_i q_i|$.
- l_2 -distance: $||p q||_2 = \sqrt{\sum_{i \in D} (p_i q_i)^2}$.

During the course of the proof, we will provide an astounding tester with respect to the l_2 −distance. In particular, we will estimate the l_2 −distance upto a multiplicative factor using only constant number of samples. While this seems very strong, part of the reason why it works out is the fact that the l_2 −distance is a "weird" measure of distance. To see why, consider the case when:

$$
p = (1, 0, ..., 0),
$$
 $q = (\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}).$

Then, l_2 -distance = $(||p - q||_2)^2 = (1 - \frac{1}{n})^2 + (n - 1)(\frac{1}{n})^2 = 1 + \frac{1}{n^2} - \frac{2}{n} + \frac{n-1}{n} \approx 1$. However, when we define two distributions that can be as far as possible:

$$
p = \left(\frac{2}{n}, \frac{2}{n}, \dots, \frac{2}{n}, 0, 0 \dots, 0\right), \qquad q = \left(0, 0 \dots, 0, \frac{2}{n}, \frac{2}{n}, \dots, \frac{2}{n}\right).
$$

i.e. distributions with disjoint support, we get that l_2 −distance is $\sqrt{n\left(\frac{2}{n}\right)^2} = \frac{2}{\sqrt{n}}$, which is quite small!

1.1 Naive Algorithm

Algorithm:

- Take m samples from p .
- For all x, estimate $p(x)$ by computing the observed frequency $\hat{p}(x) = \frac{\text{\#times } x \text{ appears in sample}}{m}$
- If the observed frequency is far from unfiorm i.e. $\sum_x |\hat{p}(x) \frac{1}{n}| > \epsilon$, REJECT, else ACCEPT.

The above algorithm will achieve our goals. We want to pick m such that whp , for x the error is bound by $\frac{\epsilon}{n}$ to get that:

$$
\forall x, |p(x) - \hat{p}(x)| < \frac{\epsilon}{n}
$$

\n
$$
\implies ||p - p'||_1 = \sum_{x \in D} |p(x) - \hat{p}(x)| < \epsilon.
$$

If $p = U_D$, then this clearly gives us the correct answer. To see why it would fail if p is 2ϵ far, we consider the contrapositive. That is, if our test accepts, then p is not 2ϵ far. Notice that if:

$$
||p - \hat{p}||_1 < \epsilon.
$$

and,

$$
||\hat{p} - U_D||_1 < \epsilon.
$$

then, by the triangle inequality,

 $||p - U_D||_1 < 2\epsilon.$

The problem however arises when we start to set m. Since we need to estimate each $p(x)$ within $\frac{\epsilon}{n}$ error, and need to see each sample at least once. Using a coupon collector argument, we will need to consider $\Omega(n)$ samples, which is not sub-linear in n. The hand-written notes also contain a tighter bound for m, but we did not discuss this in class.

1.2 l_2 -Distance

We now turn our attention to l_2 -distance. Before we proceed, let's establish a useful set of facts:

Fact (*)

$$
||p - U_d||_2^2 = \sum_{x \in D} \left(p_i - \frac{1}{n}\right)^2
$$

= $\sum_i p_i^2 + 2 \sum_i p_i \frac{1}{n} - \sum_i \frac{1}{n^2}$
= $\sum_i p_i^2 + \frac{2}{n} \sum_i p_i - \sum_i \frac{1}{n^2}$
= $\sum_i p_i^2 + \frac{2}{n} - \frac{1}{n}$
= $\sum_i p_i^2 - \frac{1}{n}$,

where p_i^2 denotes the *collision probability* of two elements i.e. we sample the same elements.

For our case of l_2 -distance, we will estimate $||p_i||_2^2$ since $||U_D||_2^2$ is already known. To estimate l_2 -distance, we follow the algorithm:

Algorithm:

- Take s samples from p .
- For all $\hat{c} \leftarrow$ estimate of $||p||_2^2$ from the sample s.
- If $\hat{c} < \frac{1}{n} + \delta$, then *ACCEPT*, else *REJECT*.

There are three questions that arise:

- 1. How many samples s should we consider?
- 2. How will we actually estimate \hat{c} ?
- 3. What should δ be?

Question 2

We begin by tackling question 2: how to estimate \hat{c} ? We follow a strategy called "estimate by recycling".

- Define s samples as $x_1, x_2, \ldots x_s$.
- For each $1 \leq i < j \leq s$, define $\sigma_{ij} \leftarrow$ if $x_i = x_j$ (notice that σ_{ij} 's are identically distributed, though not independent).
- Output $\hat{c} \leftarrow (\sum_{i < j} \sigma_{ij}) / \binom{s}{2}$ (i.e. normalize by number of pairs).

Now, we compute the expected value of \hat{c} :

$$
\mathbb{E}[\hat{c}] = \frac{1}{\binom{s}{2}} \binom{s}{2} \mathbb{E}[\sigma_{ij}] = ||p||_2^2.
$$

Question 3

Next, we decide how good our approximation must be i.e. we fix δ . Ultimately, we will use this to decide how many samples we need to take.

We set $\delta = \epsilon^2/2$. To see why this will work, assume that $|\hat{c} - ||p||_2^2 < \epsilon^2/2$. Then, if $p = U_D$:

$$
\hat{c} < ||U||_2^2 + \epsilon^2/2 \qquad \qquad \text{(From assumption)}
$$
\n
$$
= \frac{1}{n} + \frac{\epsilon^2}{2}. \qquad \qquad \text{(Pass!)}
$$

If $p \neq U_D$: i.e. $||p - U_D||_2 > \epsilon$, then $||p - U_D||_2^2 > \epsilon^2$. Using fact $(*)$, we know that:

$$
||p||_2^2 = ||p - U_D||_2 + \frac{1}{n} = \epsilon^2 + \frac{1}{n} > \frac{1}{2} + \frac{\epsilon^2}{2}.
$$
 (Fail!)

So, now all is left to do is to pick the number of samples such that we can make $|\hat{c} - ||p||_2^2 < \epsilon^2/2$ hold.

Question 1

Let's first establish useful facts about the variance of \hat{c} . Ultimately, we will plug this into Chebyshev to get a good bound.

First, note that:

$$
Var[\hat{c}] = Var\left[\left(\sum_{i < j} \sigma_{ij}\right) / \binom{s}{2}\right] = \frac{1}{\binom{s}{2}^2} Var\left[\left(\sum_{i < j} \sigma_{ij}\right)\right].
$$

Lemma 1. The variance of $\sum_{i < j} \sigma_{ij}$ is bounded by $O(s^3 ||p||_2^3)$.

Corollary 2. The above lemma immediately implies that the variance of \hat{c} is bounded by $O(||p||_2^3)/s$.

Proof of Lemma: To make our analysis easier, define $\bar{\sigma}_{ij} = \sigma_{ij} - \mathbb{E}[\sigma_{ij}]$. We use this definition because the $\mathbb{E}[\bar{\sigma}_{ij}] = 0$, which will be a useful fact to exploit. In particular, notice that:

$$
\bar{\sigma}_{ij} < \sigma_{ij},
$$
\n
$$
\mathbb{E}[\bar{\sigma}_{ij}\bar{\sigma}_{kl}] \leq \mathbb{E}[\sigma_{ij}\sigma_{kl}].
$$

To begin our analysis, we simply break up the definition of $Var[\sum_{i < j} \sigma_i]$ into multiple cases:

$$
Var\left[\sum_{i < j} \sigma_i\right] = \mathbb{E}\left[\left(\sum_{i < j} \sigma_{ij} - \mathbb{E}\left[\sum_{i < j} \sigma_{ij}\right]\right)^2\right]
$$
\n
$$
= \mathbb{E}\left[\left(\sum_{i < j} \bar{\sigma}_{ij}\right)^2\right]
$$
\n
$$
= \mathbb{E}\left[\sum_{i,j,k,l} \bar{\sigma}_{ij}\bar{\sigma}_{kl} + \sum_{i,j,k,l} \bar{\sigma}_{ij}\bar{\sigma}_{kl} + \sum_{i,j,k,l} \bar{\sigma}_{ij}\bar{\sigma}_{kl}\right]
$$
\n
$$
2 \text{ unique indices}
$$

.

We handle each case separately:

1. First, we bound the case where there are only 2 unique indices. We need to compute,

$$
\mathbb{E}\left[\sum_{i,j,k,l}\bar{\sigma}_{ij}\bar{\sigma}_{kl}\right] \leq \mathbb{E}\left[\left(\sum_{i,j,k,l}\sigma_{ij}\sigma_{kl}\right)\right]
$$

\n2 unique indices
\n
$$
= \sum_{i\n(Linearity of expectation)
\n
$$
= {s \choose 2} ||p||_2^2.
$$
\n(7.11)
$$

2. Next, we bound the case where there are only 4 unique indices. Since all the indices are distinct, we can exploit independence to factor expectation.

$$
\mathbb{E}\left[\sum_{\substack{i,j,k,l \ i\text{ unique indices}}} \bar{\sigma}_{ij}\bar{\sigma}_{kl}\right] = \sum_{\substack{i,j,k,l \ i\text{ unique indices}}} \mathbb{E}[\bar{\sigma}_{ij}]\mathbb{E}[\bar{\sigma}_{kl}] = 0.
$$

3. Finally, we bound the case where there are 3 unique indices.

$$
\sum_{i,j,k,l} \bar{\sigma}_{ij} \bar{\sigma}_{kl} \leq \sum_{i,j,k,l} \sigma_{ij} \sigma_{kl}
$$
\n3 unique indices\n
$$
= \sum_{a,b,c \text{ distinct}} \mathbb{P}[X_a = X_b = X_c]
$$
\n
$$
\leq 6 \binom{s}{3} \sum_x p(x)^3
$$
\n
$$
\leq cs^3 \left(\left(\sum_x p(x)^2 \right)^{3/2} \right) \text{ Using the fact } \sum_x p(x)^3 \leq \left(\sum_x p(x)^2 \right)^{3/2}
$$
\n
$$
= O(s^3 ||p||_2^3).
$$

Question 2

Finally we turn to the question of number of samples s. We need estimate $||p||_2^2$ within $\epsilon^2/2$. To do so, we will utilize Chebyshev:

$$
\mathbb{P}[\left|\hat{c} - ||p||_2^2\right| > \epsilon^2/2] \le \frac{Var[\hat{c}]}{(\epsilon^2/2)^2}
$$

$$
= \frac{C||p||_2^2}{\epsilon^4 s}.
$$

We need to pick s big enough to kill the $\frac{C}{\epsilon^4}$ factor since $||p||_2^2 \leq 1$. That is, $s = \Omega(1/\epsilon^4)$. Notably, s is not a functon of $\boldsymbol{n}.$

Estimating l_1 -distance

Using the algorithm described above, we can now show that it is possible to estimate l_1 –distance in $O(\sqrt{n}/\epsilon^4)$ samples.

To see why this is correct, notice that:

$$
||p - U_d||_1 = 0 \iff ||p - U_d||_2 = 0
$$

$$
\iff ||p||_2^2 = \frac{1}{n}.
$$

and,

$$
||p - U_d||_1 > \epsilon \implies ||p - U_d||_2 > \frac{\epsilon}{\sqrt{n}}
$$

$$
\implies ||p - U_D||_2^2 > \frac{\epsilon^2}{n}
$$

$$
\implies ||p||_2^2 > \frac{1 + \epsilon^2}{n}.
$$

If we get a multiplicative estimate \hat{c} of $||p||_2^2$ within $\gamma = \epsilon^2/4$, then when $||p - U_d||_1 > \epsilon$, $\hat{c} \ge$ $(1 - \gamma) ||p_2||^2 \geq \left(1 - \frac{\epsilon^2}{4}\right)$ $\left(\frac{1}{4}+\epsilon^2\right)=\frac{1}{n}+\frac{3\epsilon^2}{4n}-\frac{\epsilon^4}{2n}$ $\frac{\epsilon}{2n}$, which is sufficiently separated from the other case when $\hat{c} \leq (1 + \frac{\epsilon^2}{4})$ $\frac{1}{4}$)n. So, we only need:

$$
\mathbb{P}\left[|\hat{c} - ||p||_2^2\right] > \gamma||p||_2^2 \le \frac{Var[\hat{c}]}{\gamma^2||p||_2^4} \\
= \frac{C||p||_2^3/s}{||p||_2^4(\epsilon^4/16)} \\
= \frac{C}{||p||_2(\epsilon^4)s}.
$$

It is always the case that $||p||_2 > \frac{1}{\sqrt{n}}$, so picking $s = \Omega(\sqrt{n}/\epsilon^4)$ suffices.