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Lecture 14
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In this class we consider a new model: given a Domain D and the ability to sample elements of this
domain using a sampler P, we would like to learn the underlying distribution of the domain. In this
model, the size of the domain, i.e. |D| = n, is known, and we would like to achieve sublinear sample
complexity in n.

For the remainder of the class, we describe a tester for the case when P is uniformly distributed on
D, denoted by Up.

1 Testing Uniformity
We would like to define a tester for P such that:

e If P =Up, then the tester outputs PASS.

o If dist(P,Up) > ¢, then the tester outputs FAIL.
There are several choices for dist(P,Up), for example we can pick one of the following:
o li—distance: ||p —qlly = X ;e p Ipi — ail-

o ly—distance: ||[p —q|l2 = /> ;ep (i — @)

During the course of the proof, we will provide an astounding tester with respect to the Iy —distance.
In particular, we will estimate the ls—distance upto a multiplicative factor using only constant number
of samples. While this seems very strong, part of the reason why it works out is the fact that the
lo—distance is a “weird” measure of distance. To see why, consider the case when:

Then, l;—distance = (|[p — q||2)? = (1 — %)2 +(n—-1) (%)2 =1+ 5 — 2421 ~ 1. However, when we
define two distributions that can be as far as possible:

2 2 2 2 2 2
p=(—,—,...,—,0,0...,0), q=1(0,0...,0,—,—,...,—).
n'n n n'n n
i.e. distributions with disjoint support, we get that lo—distance is \/n (%)2 = %, which is quite small!

1.1 Naive Algorithm

Algorithm:

e Take m samples from p.

__ #times x appears in sample
m

e For all z, estimate p(x) by computing the observed frequency p(z)

o If the observed frequency is far from unfiorm ie. 3},
ACCEPT.

px) — L] > €, REJECT, else

The above algorithm will achieve our goals. We want to pick m such that whp, for x the error is
bound by - to get that:



Ve, [p(e) - pla)| < -

= |lp=7lli =) Ip(x) —p(z)| <.
€D

If p = Up, then this clearly gives us the correct answer. To see why it would fail if p is 2¢ far, we
consider the contrapositive. That is, if our test accepts, then p is not 2¢ far. Notice that if:

llp =l <e
and,
I — Upllx <e.
then, by the triangle inequality,
llp = Uplx < 2e.

The problem however arises when we start to set m. Since we need to estimate each p(z) within
£ error, and need to see each sample at least once. Using a coupon collector argument, we will need
to consider Q(n) samples, which is not sub-linear in n. The hand-written notes also contain a tighter
bound for m, but we did not discuss this in class.

1.2 [;-Distance

We now turn our attention to ls-distance. Before we proceed, let’s establish a useful set of facts:

Fact (*)
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where p? denotes the collision probability of two elements i.e. we sample the same elements.

For our case of lo-distance, we will estimate ||p;||3 since ||Upl|3 is already known. To estimate
lo-distance, we follow the algorithm:



Algorithm:
e Take s samples from p.

e For all ¢ + estimate of ||p||3 from the sample s.

e If ¢ < L 44, then ACCEPT, else REJECT.

There are three questions that arise:

1. How many samples s should we consider?
2. How will we actually estimate ¢?

3. What should § be?

Question 2
We begin by tackling question 2: how to estimate ¢? We follow a strategy called ”estimate by recycling”.
e Define s samples as 1, Zo,...Ts.

e For each 1 <i < j <s, define 0;; < if ; = x; (notice that o;;’s are identically distributed, though
not independent).

e Output ¢ < (3, 0:;)/(5) (i.e. normalize by number of pairs).

Now, we compute the expected value of é:

Bie) = g5 (5 Eloal = Il

Question 3

Next, we decide how good our approximation must be i.e. we fix 4. Ultimately, we will use this to decide
how many samples we need to take.
We set § = €2/2. To see why this will work, assume that |¢ — ||p||3| < €2/2. Then, if p = Up:

e < ||U|3+ /2 (From assumption)
1 2
= + % (Pass!)

If p# Up: ie. |[p—Upllz > ¢, then ||p — Up||3 > €2. Using fact (*), we know that:

1 1 1 €2
Il =|p—Uplla+—-=€+—> -+ —.
n n 2

5 (Fail!)

So, now all is left to do is to pick the number of samples such that we can make |é — ||p||3] < €2/2
hold.



Question 1

Let’s first establish useful facts about the variance of ¢. Ultimately, we will plug this into Chebyshev to
get a good bound.
First, note that:

Varld = Var | | Yoy /(Z) :(Slvm« Y o

i<j 2)2 i<j

Lemma 1. The variance of >.._.0;j is bounded by O(s3||p||3).

i<j
Corollary 2. The above lemma immediately implies that the variance of é is bounded by O(||p||3)/s.

Proof of Lemma: To make our analysis easier, define 7;; = 0;; — E[o;;]. We use this definition
because the E[g;;] = 0, which will be a useful fact to exploit. In particular, notice that:

05 < Tij,
E[a'ijakl] < E[Uij(f}cl].

To begin our analysis, we simply break up the definition of Var[}_, j 0;] into multiple cases:

2

Var Z(Ti =K Zdij—E Z(Tij

1<j 1<j 1<j

=K Z(}ij

1<j

=E| Y 6ij0m + Y 0ij0w + Y 0ij0k

0,5,k 0,5,k i,3,k,1

2 unique indices 3 unique indices 4 unique indices

We handle each case separately:

1. First, we bound the case where there are only 2 unique indices. We need to compute,

E[ Y 6ijon ] SE[(D oijow)]

0,5,k,1 .5kl
2 unique indices 2 unique indices
. 2 . . .
= E E[(0i;)7] (Linearity of expectation)
1<j

S
= (3) i (0% = 03)

2. Next, we bound the case where there are only 4 unique indices. Since all the indices are distinct,
we can exploit independence to factor expectation.



E[ Z 0ij0kl ] = Z E[&ij]E[ﬁkl] =0.

.5,k .5,k

4 unique indices 4 unique indices

3. Finally, we bound the case where there are 3 unique indices.

E 0ij0k < E 0ij0kl

i,5,k,1 ,5,k,1

3 unique indices 3 unique indices

= Z P[Xa =X = Xc}

a,b,c distinct

< 6(;) > p@)?
’ 3/2
< cs® (Z p(:r)2> Using the fact Zp(m)?’ < <Z p(x)2>

= 0(s|Iplf3).

3/2

Question 2

Finally we turn to the question of number of samples s. We need estimate ||p||3 within €2/2. To do so,
we will utilize Chebyshev:

) Var[¢]
Plle — |Ipll3] > €2/2] < W
_ Clpll

ets

We need to pick s big enough to kill the & factor since |[p|[3 < 1. That is, s = Q(1/e*). Notably, s
is not a functon of n.

Estimating [; —distance

Using the algorithm described above, we can now show that it is possible to estimate [; —distance in

O(y/n/e*) samples.
To see why this is correct, notice that:

llp=Uillh =0 < |[p—Udll2=0
1
2
< = —.
lpll3 =
and,
€
Vn

2 e
= - Unl3>S

llp—Ually > ¢ = |[lp—Udll2 >

2 1+€2
— il > 1




If we get a multiplicative estimate é of ||p||2 within v = €2/4, then when ||p — Uyl|y > €, & >
(1 —)||p2|]? > (1 - %) (2+e?) =21+ % — £ which is sufficiently separated from the other case

2n?

when ¢ < (1 + %)n So, we only need:

Var[d]

7?lIpll3

_ Clliys
[Ipl3(e*/16)
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lplla(et)s”

It is always the case that ||p||2 > ﬁ, so picking s = Q(y/n/e*) suffices.

P [le— llpll3| > +llpll] <




