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Lecture 14
Lecturer: Ronitt Rubinfeld Scribe: Manya Bansal

In this class we consider a new model: given a Domain D and the ability to sample elements of this
domain using a sampler P , we would like to learn the underlying distribution of the domain. In this
model, the size of the domain, i.e. |D| = n, is known, and we would like to achieve sublinear sample
complexity in n.

For the remainder of the class, we describe a tester for the case when P is uniformly distributed on
D, denoted by UD.

1 Testing Uniformity

We would like to define a tester for P such that:

• If P = UD, then the tester outputs PASS.

• If dist(P,UD) > ϵ, then the tester outputs FAIL.

There are several choices for dist(P,UD), for example we can pick one of the following:

• l1−distance: ||p− q||1 =
∑

i∈D |pi − qi|.

• l2−distance: ||p− q||2 =
√∑

i∈D(pi − qi)2.

During the course of the proof, we will provide an astounding tester with respect to the l2−distance.
In particular, we will estimate the l2−distance upto a multiplicative factor using only constant number
of samples. While this seems very strong, part of the reason why it works out is the fact that the
l2−distance is a “weird” measure of distance. To see why, consider the case when:

p = (1, 0, . . . , 0), q = (
1

n
,
1

n
, . . . ,

1

n
).

Then, l2−distance = (||p− q||2)2 =
(
1− 1

n

)2
+(n− 1)

(
1
n

)2
= 1+ 1

n2 − 2
n + n−1

n ≈ 1. However, when we
define two distributions that can be as far as possible:

p = (
2

n
,
2

n
, . . . ,

2

n
, 0, 0 . . . , 0), q = (0, 0 . . . , 0,

2

n
,
2

n
, . . . ,

2

n
).

i.e. distributions with disjoint support, we get that l2−distance is

√
n
(
2
n

)2
= 2√

n
, which is quite small!

1.1 Naive Algorithm

Algorithm:

• Take m samples from p.

• For all x, estimate p(x) by computing the observed frequency p̂(x) = #times x appears in sample
m

• If the observed frequency is far from unfiorm i.e.
∑

x

∣∣p̂(x)− 1
n

∣∣ > ϵ, REJECT , else
ACCEPT .

The above algorithm will achieve our goals. We want to pick m such that whp, for x the error is
bound by ϵ

n to get that:
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∀x, |p(x)− p̂(x)| < ϵ

n

=⇒ ||p− p′||1 =
∑
x∈D

|p(x)− p̂(x)| < ϵ.

If p = UD, then this clearly gives us the correct answer. To see why it would fail if p is 2ϵ far, we
consider the contrapositive. That is, if our test accepts, then p is not 2ϵ far. Notice that if:

||p− p̂||1 < ϵ.

and,

||p̂− UD||1 < ϵ.

then, by the triangle inequality,

||p− UD||1 < 2ϵ.

The problem however arises when we start to set m. Since we need to estimate each p(x) within
ϵ
n error, and need to see each sample at least once. Using a coupon collector argument, we will need
to consider Ω(n) samples, which is not sub-linear in n. The hand-written notes also contain a tighter
bound for m, but we did not discuss this in class.

1.2 l2-Distance

We now turn our attention to l2-distance. Before we proceed, let’s establish a useful set of facts:

Fact (*)

||p− Ud||22 =
∑
x∈D

(
pi −

1

n

)2

=
∑
i

p2i + 2
∑
i

pi
1

n
−
∑
i

1

n2

=
∑
i

p2i +
2

n

∑
i

pi −
∑
i

1

n2

=
∑
i

p2i +
2

n
− 1

n

=
∑
i

p2i −
1

n
,

where p2i denotes the collision probability of two elements i.e. we sample the same elements.

For our case of l2-distance, we will estimate ||pi||22 since ||UD||22 is already known. To estimate
l2-distance, we follow the algorithm:
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Algorithm:

• Take s samples from p.

• For all ĉ← estimate of ||p||22 from the sample s.

• If ĉ < 1
n + δ, then ACCEPT , else REJECT .

There are three questions that arise:

1. How many samples s should we consider?

2. How will we actually estimate ĉ?

3. What should δ be?

Question 2

We begin by tackling question 2: how to estimate ĉ? We follow a strategy called ”estimate by recycling”.

• Define s samples as x1, x2, . . . xs.

• For each 1 ≤ i < j ≤ s, define σij ← if xi = xj (notice that σij ’s are identically distributed, though
not independent).

• Output ĉ← (
∑

i<j σij)/
(
s
2

)
(i.e. normalize by number of pairs).

Now, we compute the expected value of ĉ:

E[ĉ] =
1(
s
2

)(s
2

)
E[σij ] = ||p||22.

Question 3

Next, we decide how good our approximation must be i.e. we fix δ. Ultimately, we will use this to decide
how many samples we need to take.

We set δ = ϵ2/2. To see why this will work, assume that |ĉ− ||p||22| < ϵ2/2. Then, if p = UD:

ĉ < ||U ||22 + ϵ2/2 (From assumption)

=
1

n
+

ϵ2

2
. (Pass!)

If p ̸= UD: i.e. ||p− UD||2 > ϵ, then ||p− UD||22 > ϵ2. Using fact (∗), we know that:

||p||22 = ||p− UD||2 +
1

n
= ϵ2 +

1

n
>

1

2
+

ϵ2

2
. (Fail!)

So, now all is left to do is to pick the number of samples such that we can make |ĉ − ||p||22| < ϵ2/2
hold.
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Question 1

Let’s first establish useful facts about the variance of ĉ. Ultimately, we will plug this into Chebyshev to
get a good bound.

First, note that:

V ar[ĉ] = V ar

∑
i<j

σij

 /

(
s

2

) =
1(
s
2

)2V ar

∑
i<j

σij

 .

Lemma 1. The variance of
∑

i<j σij is bounded by O(s3||p||32).

Corollary 2. The above lemma immediately implies that the variance of ĉ is bounded by O(||p||32)/s.

Proof of Lemma: To make our analysis easier, define σ̄ij = σij − E[σij ]. We use this definition
because the E[σ̄ij ] = 0, which will be a useful fact to exploit. In particular, notice that:

σ̄ij < σij ,

E[σ̄ij σ̄kl] ≤ E[σijσkl].

To begin our analysis, we simply break up the definition of V ar[
∑

i<j σi] into multiple cases:

V ar

∑
i<j

σi

 = E


∑

i<j

σij − E

∑
i<j

σij

2


= E


∑

i<j

σ̄ij

2


= E


∑
i,j,k,l

σ̄ij σ̄kl︸ ︷︷ ︸
2 unique indices

+
∑
i,j,k,l

σ̄ij σ̄kl︸ ︷︷ ︸
3 unique indices

+
∑
i,j,k,l

σ̄ij σ̄kl︸ ︷︷ ︸
4 unique indices

 .

We handle each case separately:

1. First, we bound the case where there are only 2 unique indices. We need to compute,

E[
∑
i,j,k,l

σ̄ij σ̄kl︸ ︷︷ ︸
2 unique indices

] ≤ E[(
∑
i,j,k,l

σijσkl)]︸ ︷︷ ︸
2 unique indices

=
∑
i<j

E[(σij)
2] (Linearity of expectation)

=

(
s

2

)
||p||22. (σ2

ij = σij)

2. Next, we bound the case where there are only 4 unique indices. Since all the indices are distinct,
we can exploit independence to factor expectation.
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E[
∑
i,j,k,l

σ̄ij σ̄kl︸ ︷︷ ︸
4 unique indices

] =
∑
i,j,k,l

E[σ̄ij ]E[σ̄kl]︸ ︷︷ ︸
4 unique indices

= 0.

3. Finally, we bound the case where there are 3 unique indices.∑
i,j,k,l

σ̄ij σ̄kl︸ ︷︷ ︸
3 unique indices

≤
∑
i,j,k,l

σijσkl︸ ︷︷ ︸
3 unique indices

=
∑

a,b,c distinct

P[Xa = Xb = Xc]

≤ 6

(
s

3

)∑
x

p(x)3

≤ cs3

(∑
x

p(x)2

)3/2
 Using the fact

∑
x

p(x)3 ≤

(∑
x

p(x)2

)3/2

= O(s3||p||32).

Question 2

Finally we turn to the question of number of samples s. We need estimate ||p||22 within ϵ2/2. To do so,
we will utilize Chebyshev:

P[|ĉ− ||p||22| > ϵ2/2] ≤ V ar[ĉ]

(ϵ2/2)2

=
C||p||32
ϵ4s

.

We need to pick s big enough to kill the C
ϵ4 factor since ||p||22 ≤ 1. That is, s = Ω(1/ϵ4). Notably, s

is not a functon of n.

Estimating l1−distance
Using the algorithm described above, we can now show that it is possible to estimate l1−distance in
O(
√
n/ϵ4) samples.

To see why this is correct, notice that:

||p− Ud||1 = 0 ⇐⇒ ||p− Ud||2 = 0

⇐⇒ ||p||22 =
1

n
.

and,

||p− Ud||1 > ϵ =⇒ ||p− Ud||2 >
ϵ√
n

=⇒ ||p− UD||22 >
ϵ2

n

=⇒ ||p||22 >
1 + ϵ2

n
.
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If we get a multiplicative estimate ĉ of ||p||22 within γ = ϵ2/4, then when ||p − Ud||1 > ϵ, ĉ ≥
(1 − γ)||p2||2 ≥

(
1− ϵ2

4

) (
1
n + ϵ2

)
= 1

n + 3ϵ2

4n −
ϵ4

2n , which is sufficiently separated from the other case

when ĉ ≤ (1 + ϵ2

4 )n. So, we only need:

P
[
|ĉ− ||p||22| > γ||p||22

]
≤ V ar[ĉ]

γ2||p||42

=
C||p||32/s
||p||42(ϵ4/16)

=
C

||p||2(ϵ4)s
.

It is always the case that ||p||2 > 1√
n
, so picking s = Ω(

√
n/ϵ4) suffices.
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