Octomber 30, 2024

Lecture 16

1 Preliminaries for Testing Monotonicity of Distributions

In this lecture, we will discuss testing for monotone (decreasing) distributions over a totally ordered domain.

Definition 1.1 (Monotone Decreasing). A distribution Q over a totally ordered domain [n] is "monotone decreasing" if for all $i \in [n]$, $Q(i) \ge Q(i+1)$.

We aim to find a monotonicity tester, such that

- if Q is monotone decreasing, then the tester outputs Pass with probability at least 1δ .
- if Q is ε -far from **any** monotone decreasing distribution \mathcal{P} , then the tester outputs Fail with probability at least 1δ .

where ε -far is measured in the L_1 distance, i.e. two distributions \mathcal{P} and \mathcal{Q} are ε -far if and only if

$$\|\mathcal{P} - \mathcal{Q}\|_1 := \sum_{i \in [n]} |\mathcal{P}(i) - \mathcal{Q}(i)| > \varepsilon.$$

1.1 Birge's Decomposition

We will use the following decomposition procedure to construct our tester:

Given a parameter ε , partition the domain [n] into $l = \theta(\frac{\log n}{\varepsilon})$ consecutive intervals:

$$\begin{split} I_1^\varepsilon, I_2^\varepsilon, \cdots, I_l^\varepsilon \\ \text{such that} \ |I_{j+1}^\varepsilon| = \lfloor (1+\varepsilon)^j \rfloor \text{ for each } j < l. \end{split}$$

In the following, we will drop the superscript ε since it is fixed in the algorithm.

The unrounded size of the intervals increase by a factor of $(1 + \varepsilon)$. Therefore, $\begin{cases} |I_1| = \cdots |I_{\theta(1/\varepsilon)}| = 1\\ |I_{\theta(1/\varepsilon)+1}| = \cdots = 2\\ \vdots \end{cases}$.

Given the decomposition, we define "flattening" a distribution as follows:

Definition 1.2. Given a distribution Q, the "flattened distribution" \tilde{Q} is defined as follows: for all intervals $j \in [l]$ and for all $i \in I_j$, let

$$\tilde{\mathcal{Q}}(i) = \frac{\sum_{i \in I_j} \mathcal{Q}(i)}{|I_j|},$$

i.e., the total weight of the interval containing *i* divided by the number of domain elements in this interval.

In the following, we will use $\mathcal{Q}(I_j)$ to denote $\sum_{i \in I_j} \mathcal{Q}(i)$. We note that $\mathcal{Q}(I_j) = \tilde{\mathcal{Q}}(I_j)$ for all intervals I_j .

The following theorem states that $\tilde{\mathcal{Q}}$ is a good approximation of \mathcal{Q} if \mathcal{Q} is (close to) monotone decreasing.

Theorem 1.3 (Birge's Theorem). If \mathcal{Q} is monotone decreasing, then $\|\mathcal{Q} - \tilde{\mathcal{Q}}\|_1 \leq O(\varepsilon)$.

This gives the following immediate corollary:

Corollary 1.4. If Q is ε -close to monotone decreasing, i.e., there exists a monotone decreasing distribution Q' such that $\|Q - Q'\|_1 \leq \varepsilon$, then $\|Q - \tilde{Q}\|_1 \leq O(\varepsilon)$.

1.2 **Proof of Birge's Theorem**

Intuitively, $\hat{\mathcal{Q}}$ is a bad approximation of \mathcal{Q} on intervals that contains a large drop-off. The proof of Birge's Theorem shows that there cannot be too many such intervals.

Proof (of Birge's Theorem). For an arbitrary interval I_j , define $x_j := \arg \max_{i \in I_j} \mathcal{Q}(i)$ and $y_j := \arg \min_{i \in I_j} \mathcal{Q}(i)$. Observe that $\|\mathcal{Q}_{I_j} - \tilde{\mathcal{Q}}_{I_j}\|_1 \leq (\mathcal{Q}(x_j) - \mathcal{Q}(y_j)) \cdot |I_j|$, where \mathcal{Q}_{I_j} denote the distribution \mathcal{Q} restricted to the interval I_j and $\tilde{\mathcal{Q}}_{I_j}$ denote $\tilde{\mathcal{Q}}$ restricted to I_j .

In the following, we consider intervals as three different types based on their sizes. Given an interval I_j , it is a

 $\begin{cases} \text{size-1 interval if } |I_j| = 1\\ \text{short interval if } 1 < |I_j| < 1/\varepsilon\\ \text{long interval if } |I_j| \ge 1/\varepsilon \end{cases}$

We observe that $\max_{i \in I_j: |I_j| > 1} \mathcal{Q}(i) = O(\varepsilon)$ because by definition there are $\theta(1/\varepsilon)$ many size-1 intervals. For monotone decreasing \mathcal{Q} , if $\max_{i \in I_j: |I_j| > 1} \mathcal{Q}(i) = \omega(\varepsilon)$ then the weight of each size-1 interval is $\omega(1)$, thus the total weight of size-1 intervals becomes $\theta(1/\varepsilon) \cdot \omega(\varepsilon) \gg 1$, a contradiction.

We now bound the error incurred by each type of intervals separately.

- (Size-1 Intervals.) $\sum_{|I_j|=1} \|Q_{I_j} \tilde{Q}_{I_j}\|_1 = 0$ because for size-1 intervals, the weight of each element is the same as the sum of weights divided by one.
- (Short Intervals.) $\sum_{1 < |I_j| < 1/\varepsilon} \|Q_{I_j} \tilde{Q}_{I_j}\|_1 \le \sum_{1 < |I_j| < 1/\varepsilon} |I_j| \cdot (Q(x_j) Q(y_j))$ as we argued before. We can split the summation according to the sizes $|I_j| = 2, 3, \dots, 1/\varepsilon - 1$. Define $j_t := \min\{j : |I_j| = t\}$ for $t = 2, 3, \dots, 1/\varepsilon - 1$, i.e., j_t is the index of the first interval of size t, we obtain

$$\sum_{1 < |I_j| < 1/\varepsilon} \| \mathcal{Q}_{I_j} - \tilde{\mathcal{Q}}_{I_j} \|_1$$

$$\leq 2 \cdot (\mathcal{Q}(x_{j_2}) - \mathcal{Q}(x_{j_3})) + 3 \cdot (\mathcal{Q}(x_{j_3}) - \mathcal{Q}(x_{j_4})) + \dots + (1/\varepsilon - 1) \cdot (\mathcal{Q}(x_{j_{1/\varepsilon-1}}) - \mathcal{Q}(x_{j_{1/\varepsilon}}))$$

$$= \mathcal{Q}(x_{j_2}) + \sum_{1 < |t| < 1/\varepsilon} \mathcal{Q}(x_{j_t}) - (1/\varepsilon - 1) \cdot \mathcal{Q}(x_{j_{1/\varepsilon}})$$

• (Long Intervals.) We still use the notation that $j_t := \min\{j : |I_j| = t\}$, i.e., j_t is the index of the first interval of size t. We get

$$\begin{split} \sum_{|I_{j}| \ge 1/\varepsilon} \|\mathcal{Q}_{I_{j}} - \tilde{\mathcal{Q}}_{I_{j}}\|_{1} &\leq \sum_{|I_{j}| \ge 1/\varepsilon} |I_{j}| \cdot (\mathcal{Q}(x_{j}) - \mathcal{Q}(y_{j})) \\ &\leq |I_{j_{1/\varepsilon}}| \cdot (\mathcal{Q}(x_{j_{1/\varepsilon}}) - \mathcal{Q}(x_{j_{1/\varepsilon}+1})) + |I_{j_{1/\varepsilon}+1}| \cdot (\mathcal{Q}(x_{j_{*}+1}) - \mathcal{Q}(x_{j_{1/\varepsilon}+2})) + \cdots \\ &= |I_{j_{1/\varepsilon}}| \cdot \mathcal{Q}(x_{j_{1/\varepsilon}}) + \sum_{j > j_{1/\varepsilon}} (|I_{j}| - |I_{j-1}|) \mathcal{Q}(x_{j}) \end{split}$$

By construction, $|I_j| - |I_{j-1}| \approx (1 + \varepsilon)|I_{j-1}| - |I_{j-1}| \approx \varepsilon |I_{j-1}|$. Therefore

$$\sum_{|I_j|\geq 1/\varepsilon} \|\mathcal{Q}_{I_j} - \tilde{\mathcal{Q}}_{I_j}\|_1 \le |I_{j_{1/\varepsilon}}| \cdot \mathcal{Q}(x_{j_{1/\varepsilon}}) + O(\varepsilon) \cdot \sum_{|I_j|\geq 1/\varepsilon} |I_j| \mathcal{Q}(x_{j+1}).$$

Summarizing the above,

$$\begin{split} \|\mathcal{Q}_{I_{j}} - \tilde{\mathcal{Q}}_{I_{j}}\|_{1} \\ &= \sum_{|I_{j}|=1} \|\mathcal{Q}_{I_{j}} - \tilde{\mathcal{Q}}_{I_{j}}\|_{1} + \sum_{1 < |I_{j}| < 1/\varepsilon} \|\mathcal{Q}_{I_{j}} - \tilde{\mathcal{Q}}_{I_{j}}\|_{1} + \sum_{|I_{j}| \geq 1/\varepsilon} \|\mathcal{Q}_{I_{j}} - \tilde{\mathcal{Q}}_{I_{j}}\|_{1} \\ &\leq \mathcal{Q}(x_{j_{2}}) - (1/\varepsilon - 1) \cdot \mathcal{Q}(x_{j_{1/\varepsilon}}) + O(\varepsilon) \cdot \sum_{|I_{j}| \geq 1/\varepsilon} |I_{j}|\mathcal{Q}(x_{j+1}) + (\sum_{1 < t < 1/\varepsilon} \mathcal{Q}(x_{j_{t}}) + |I_{j_{1/\varepsilon}}| \cdot \mathcal{Q}(x_{j_{1/\varepsilon}})) \\ &\leq O(\varepsilon) + O(\varepsilon) \cdot \sum_{|I_{j}| \geq 1/\varepsilon} |I_{j}|\mathcal{Q}(x_{j+1}) + (\sum_{1 < t < 1/\varepsilon} \mathcal{Q}(x_{j_{t}}) + (|I_{j_{1/\varepsilon}}| - 1/\varepsilon + 1) \cdot \mathcal{Q}(x_{j_{1/\varepsilon}})) \end{split}$$

It suffices to show that $\sum_{|I_j| \ge 1/\varepsilon} |I_j| \mathcal{Q}(x_{j+1}) = O(1)$ and $\sum_{1 < t < 1/\varepsilon} \mathcal{Q}(x_{j_t}) + (|I_{j_{1/\varepsilon}}| - 1/\varepsilon + 1) \cdot \mathcal{Q}(x_{j_{1/\varepsilon}}) = O(\varepsilon)$. The former holds because the summation is at most the cumulative mass of the probability distribution \mathcal{Q} which sums to 1. For the latter, we observe that

$$\sum_{1 < t \le 1/\varepsilon} (\mathcal{Q}(x_{j_t}) \cdot \sum_{|I_j|=t} |I_j|) \le 1$$

because this summation is also at most the cumulative mass of the entire distribution. Moreover, for each $1 < t \leq 1/\varepsilon$, we have $\sum_{|I_j|=t} |I_j| \geq \theta(1/\varepsilon)$ by our definition of intervals. This implies $\sum_{1 < t \leq 1/\varepsilon} \mathcal{Q}(x_{j_t}) = O(\varepsilon)$. Finally, since $(|I_{j_{1/\varepsilon}}| - 1/\varepsilon + 1) = 1/\varepsilon - 1/\varepsilon + 1 = 1$, we obtain

$$\sum_{1 < t < 1/\varepsilon} \mathcal{Q}(x_{j_t}) + (|I_{j_{1/\varepsilon}}| - 1/\varepsilon + 1) \cdot \mathcal{Q}(x_{j_{1/\varepsilon}})) = \sum_{1 < t < 1/\varepsilon} \mathcal{Q}(x_{j_t}) + \mathcal{Q}(x_{j_{1/\varepsilon}})$$
$$= \sum_{1 < t \le 1/\varepsilon} \mathcal{Q}(x_{j_t})$$
$$= O(\varepsilon)$$

which concludes our proof that $\|\mathcal{Q}_{I_j} - \tilde{\mathcal{Q}}_{I_j}\|_1 = O(\varepsilon)$.

2 Monotonicity Tester

We start by presenting a simplified tester (which unfortunately does not work) and then discuss its issues and fixes.

2.1 Simplified Tester

Testing Algorithm for Monotonicity
Input: (Samples of) a distribution Q to be tested.
1. Take m samples S of Q.
2. For each interval I_j:

(a) Let S_j ← S ∩ I_j.
(b) Let ŵ_j ← ^{|S_j|}/_m.

Means of the weight of interval I_j, i.e. guess of Q(I_j) = Q̃(I_j).

3. Define Q* as follows: for all i ∈ I_j and for all intervals I_j, Q* := ^{ŵ_j}/<sub>|I_j|.
4. If Q* is monotone decreasing then output Pass; otherwise output Fail.
</sub>

The intuition behind the above tester is that when Q is (close to) monotone decreasing, \tilde{Q} and Q are close by Birge's Theorem. Therefore, the hope is that if Q^* well-approximates \tilde{Q} then testing on Q^* works for the original distribution Q. However, there are multiple problems about this idealized argument, and we are going to fix them by modifying line 4 of the tester (marked in blue).

2.2 Problems and Fixes

Problem 1. Sampling Errors. Even when both $Q = \tilde{Q}$ is monotone decreasing, it is possible that Q^* induced by our samples S is not *exactly* monotone decreasing due to sampling errors. Consider $Q = \tilde{Q}$ being uniform distributions as an example. Sampling errors can easily cause Q^* to deviate from being exactly monotone.

To fix this, we will tolerate a small error when testing Q^* . i.e., Instead of line 4 of the simplified tester, we use the following Test A:

A. If Q^* is $c \cdot \varepsilon$ -close to monotone decreasing then output Pass; otherwise output Fail.

for some constant c < 1. We note that Test A does not require any new samples from Q, and can be implemented in poly $\log(n)$ time using linear programming with $O(\log n)$ variables.

Problem 2. Errors within Intervals. Recall that we flatten each intervals such that all weights inside a same interval is regarded the same. However, it is possible for an input distribution Q to be monotone decreasing across different intervals, but non-monotone inside intervals. To detect this, we need another test to verify that Q looks good inside each interval. This is described as the following Test B:

B. For each interval I_j , run a uniformity test using samples S_j . If more than $c' \cdot \varepsilon$ -fraction of uniformity test fails, output Fail; otherwise output Pass.

for some constant c' < 1. The idea is that if Q is (close to) monotone, then by Birge's Theorem it is close to \hat{Q} which is uniform within each intervals. We note that the uniformity test is guaranteed to pass only on *exactly* uniform distributions. However, one can show that for distributions where the maximum and minimum probabilities are close (which is the case within each interval of a close-to-monotone Q), the uniformity test is likely to pass distributions that are *close* to uniform.

Analysis. Summarizing the above, we replace line 4 in the simplified tester with two tests A and B. The modified tester outputs Pass if and only if both tests A and B pass. We need roughly $\sqrt{I_j}$ samples for each interval I_j and the total number of intervals is $O(\frac{\log n}{\varepsilon})$. This results in a total number of samples $m = O(\sqrt{n} \cdot \operatorname{poly}(\log n, 1/\varepsilon))$.

For the correctness, when Q is monotone thus \tilde{Q} is monotone, Test A passes with high probability because we can show via a Chernoff bound that each \hat{w}_j is close to $\tilde{Q}(I_j)$, which implies $\|Q^* - \tilde{Q}\|_1 \leq c \cdot \varepsilon$ for some properly chosen constant c. Moreover, Test B passes with high probability because of our argument on (tolerating) uniformity test above.

For the negative case, we show the contrapositive that if the tester is likely to pass, then Q is ε -close to monotone decreasing. Passing Test A implies that Q^* is close to monotone. Passing Test B means Q is almost uniform on all intervals thus close to \tilde{Q} . Therefore, since Q^* is likely to well-approximate \tilde{Q} by the Chernoff bound, Q is close to monotone by the triangle inequality.