Lecture 16

.

1 Preliminaries for Testing Monotonicity of Distributions

In this lecture, we will discuss testing for monotone (decreasing) distributions over a totally ordered domain.

Definition 1.1 (Monotone Decreasing)**.** *A distribution* Q *over a totally ordered domain* [*n*] *is "monotone decreasing" if for all* $i \in [n]$, $\mathcal{Q}(i) \geq \mathcal{Q}(i+1)$ *.*

We aim to find a monotonicity tester, such that

- if Q is monotone decreasing, then the tester outputs Pass with probability at least 1δ .
- if Q is ε -far from **any** monotone decreasing distribution P , then the tester outputs Fail with probability at least $1 - \delta$.

where ε -far is measured in the L_1 distance, i.e. two distributions $\mathcal P$ and $\mathcal Q$ are ε -far if and only if

$$
\|\mathcal{P} - \mathcal{Q}\|_1 := \sum_{i \in [n]} |\mathcal{P}(i) - \mathcal{Q}(i)| > \varepsilon.
$$

1.1 Birge's Decomposition

We will use the following decomposition procedure to construct our tester:

Given a parameter ε , partition the domain $[n]$ into $l = \theta(\frac{\log n}{\varepsilon})$ consecutive intervals:

$$
I_1^{\varepsilon}, I_2^{\varepsilon}, \cdots, I_l^{\varepsilon}
$$
 such that $|I_{j+1}^{\varepsilon}| = \lfloor (1+\varepsilon)^j \rfloor$ for each $j < l$.

In the following, we will drop the superscript ε since it is fixed in the algorithm.

The unrounded size of the intervals increase by a factor of $(1 + \varepsilon)$. Therefore, $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $|I_1| = \cdots |I_{\theta(1/\varepsilon)}| = 1$ $|I_{\theta(1/\varepsilon)+1}| = \cdots = 2$. . .

Given the decomposition, we define "flattening" a distribution as follows:

Definition 1.2. *Given a distribution* Q *, the "flattened distribution"* \tilde{Q} *is defined as follows: for all intervals* $j \in [l]$ *and for all* $i \in I_j$ *, let*

$$
\tilde{Q}(i) = \frac{\sum_{i \in I_j} Q(i)}{|I_j|},
$$

i.e., the total weight of the interval containing i divided by the number of domain elements in this interval.

In the following, we will use $\mathcal{Q}(I_j)$ to denote $\sum_{i \in I_j} \mathcal{Q}(i)$. We note that $\mathcal{Q}(I_j) = \tilde{\mathcal{Q}}(I_j)$ for all intervals I_j .

The following theorem states that \tilde{Q} is a good approximation of Q if Q is (close to) monotone decreasing.

Theorem 1.3 (Birge's Theorem). *If* Q *is monotone decreasing, then* $||Q - \tilde{Q}||_1 \le O(\varepsilon)$ *.*

This gives the following immediate corollary:

Corollary 1.4. *If* Q *is ε-close to monotone decreasing, i.e., there exists a monotone decreasing distribution* \mathcal{Q}' such that $\|\mathcal{Q} - \mathcal{Q}'\|_1 \leq \varepsilon$, then $\|\mathcal{Q} - \tilde{\mathcal{Q}}\|_1 \leq O(\varepsilon)$.

1.2 Proof of Birge's Theorem

Intuitively, Q is a bad approximation of Q on intervals that contains a large drop-off. The proof of Birge's Theorem shows that there cannot be too many such intervals.

Proof (of Birge's Theorem). For an arbitrary interval I_j , define $x_j := \arg \max_{i \in I_j} \mathcal{Q}(i)$ and $y_j := \arg \min_{i \in I_j} \mathcal{Q}(i)$. Observe that $||\mathcal{Q}_{I_j} - \tilde{\mathcal{Q}}_{I_j}||_1 \leq (\mathcal{Q}(x_j) - \mathcal{Q}(y_j)) \cdot |I_j|$, where \mathcal{Q}_{I_j} denote the distribution $\mathcal Q$ restricted to the interval I_j and \tilde{Q}_{I_j} denote \tilde{Q} restricted to I_j .

In the following, we consider intervals as three different types based on their sizes. Given an interval I_i , it is a

 $\sqrt{ }$ \int \overline{a} size-1 interval if $|I_j| = 1$ short interval if $1 < |I_j| < 1/\varepsilon$ long interval if $|I_j| \geq 1/\varepsilon$

We observe that $\max_{i \in I_j : |I_j| > 1} \mathcal{Q}(i) = O(\varepsilon)$ because by definition there are $\theta(1/\varepsilon)$ many size-1 intervals. For monotone decreasing Q, if $\max_{i \in I_i : |I_i| > 1} Q(i) = \omega(\varepsilon)$ then the weight of each size-1 interval is $\omega(1)$, thus the total weight of size-1 intervals becomes $\theta(1/\varepsilon) \cdot \omega(\varepsilon) \gg 1$, a contradiction.

We now bound the error incurred by each type of intervals separately.

- (Size-1 Intervals.) $\sum_{|I_j|=1} ||Q_{I_j} \tilde{Q}_{I_j}||_1 = 0$ because for size-1 intervals, the weight of each element is the same as the sum of weights divided by one.
- (Short Intervals.) $\sum_{1\leq |I_j|<1/\varepsilon} ||\mathcal{Q}_{I_j} \tilde{\mathcal{Q}}_{I_j}||_1 \leq \sum_{1\leq |I_j|<1/\varepsilon} |I_j| \cdot (\mathcal{Q}(x_j) \mathcal{Q}(y_j))$ as we argued before. We can split the summation according to the sizes $|I_j| = 2, 3, \dots, 1/\varepsilon - 1$. Define $j_t := \min\{j : |I_j| = t\}$ for $t = 2, 3, \dots, 1/\varepsilon - 1$, i.e., j_t is the index of the first interval of size t , we obtain

$$
\sum_{1 < |I_j| < 1/\varepsilon} \|\mathcal{Q}_{I_j} - \tilde{\mathcal{Q}}_{I_j}\|_1
$$
\n
$$
\leq 2 \cdot (\mathcal{Q}(x_{j_2}) - \mathcal{Q}(x_{j_3})) + 3 \cdot (\mathcal{Q}(x_{j_3}) - \mathcal{Q}(x_{j_4})) + \dots + (1/\varepsilon - 1) \cdot (\mathcal{Q}(x_{j_{1/\varepsilon-1}}) - \mathcal{Q}(x_{j_{1/\varepsilon}}))
$$
\n
$$
= \mathcal{Q}(x_{j_2}) + \sum_{1 < |t| < 1/\varepsilon} \mathcal{Q}(x_{j_t}) - (1/\varepsilon - 1) \cdot \mathcal{Q}(x_{j_{1/\varepsilon}})
$$

• (Long Intervals.) We still use the notation that $j_t := \min\{j : |I_j| = t\}$, i.e., j_t is the index of the first interval of size *t*. We get

$$
\sum_{|I_j| \ge 1/\varepsilon} \|\mathcal{Q}_{I_j} - \tilde{\mathcal{Q}}_{I_j}\|_1 \le \sum_{|I_j| \ge 1/\varepsilon} |I_j| \cdot (\mathcal{Q}(x_j) - \mathcal{Q}(y_j))
$$
\n
$$
\le |I_{j_{1/\varepsilon}}| \cdot (\mathcal{Q}(x_{j_{1/\varepsilon}}) - \mathcal{Q}(x_{j_{1/\varepsilon}+1})) + |I_{j_{1/\varepsilon}+1}| \cdot (\mathcal{Q}(x_{j_{\varepsilon}+1}) - \mathcal{Q}(x_{j_{1/\varepsilon}+2})) + \cdots
$$
\n
$$
= |I_{j_{1/\varepsilon}}| \cdot \mathcal{Q}(x_{j_{1/\varepsilon}}) + \sum_{j > j_{1/\varepsilon}} (|I_j| - |I_{j-1}|) \mathcal{Q}(x_j)
$$

By construction, $|I_j| - |I_{j-1}| \approx (1+\varepsilon)|I_{j-1}| - |I_{j-1}| \approx \varepsilon |I_{j-1}|$. Therefore

$$
\sum_{|I_j|\geq 1/\varepsilon}\lVert \mathcal{Q}_{I_j}-\tilde{\mathcal{Q}}_{I_j}\rVert_1\leq |I_{j_{1/\varepsilon}}|\cdot \mathcal{Q}(x_{j_{1/\varepsilon}})+O(\varepsilon)\cdot \sum_{|I_j|\geq 1/\varepsilon}|I_j|\mathcal{Q}(x_{j+1}).
$$

Summarizing the above,

$$
\|Q_{I_j} - \tilde{Q}_{I_j}\|_1
$$
\n
$$
= \sum_{|I_j|=1} \|Q_{I_j} - \tilde{Q}_{I_j}\|_1 + \sum_{1 < |I_j| < 1/\varepsilon} \|Q_{I_j} - \tilde{Q}_{I_j}\|_1 + \sum_{|I_j| \ge 1/\varepsilon} \|Q_{I_j} - \tilde{Q}_{I_j}\|_1
$$
\n
$$
\le Q(x_{j_2}) - (1/\varepsilon - 1) \cdot Q(x_{j_{1/\varepsilon}}) + O(\varepsilon) \cdot \sum_{|I_j| \ge 1/\varepsilon} |I_j| Q(x_{j+1}) + (\sum_{1 < t < 1/\varepsilon} Q(x_{j_t}) + |I_{j_{1/\varepsilon}}| \cdot Q(x_{j_{1/\varepsilon}}))
$$
\n
$$
\le O(\varepsilon) + O(\varepsilon) \cdot \sum_{|I_j| \ge 1/\varepsilon} |I_j| Q(x_{j+1}) + (\sum_{1 < t < 1/\varepsilon} Q(x_{j_t}) + (|I_{j_{1/\varepsilon}}| - 1/\varepsilon + 1) \cdot Q(x_{j_{1/\varepsilon}}))
$$

It suffices to show that $\sum_{|I_j| \ge 1/\varepsilon} |I_j| \mathcal{Q}(x_{j+1}) = O(1)$ and $\sum_{1 \le t \le 1/\varepsilon} \mathcal{Q}(x_{j_t}) + (|I_{j_{1/\varepsilon}}| - 1/\varepsilon + 1) \cdot \mathcal{Q}(x_{j_{1/\varepsilon}}) = O(\varepsilon)$. The former holds because the summation is at most the cumulative mass of the probability distribution $\mathcal Q$ which sums to 1. For the latter, we observe that

$$
\sum_{1 \le t \le 1/\varepsilon} (Q(x_{j_t}) \cdot \sum_{|I_j|=t} |I_j|) \le 1
$$

because this summation is also at most the cumulative mass of the entire distribution. Moreover, for each $1 < t \leq 1/\varepsilon$, we have $\sum_{|I_j| = t} |I_j| \geq \theta(1/\varepsilon)$ by our definition of intervals. This implies $\sum_{1 \leq t \leq 1/\varepsilon} \mathcal{Q}(x_{jt}) = O(\varepsilon)$. Finally, since $(|I_{j_1/\varepsilon}| - 1/\varepsilon + 1) = 1/\varepsilon - 1/\varepsilon + 1 = 1$, we obtain

$$
\sum_{1 < t < 1/\varepsilon} \mathcal{Q}(x_{j_t}) + (|I_{j_{1/\varepsilon}}| - 1/\varepsilon + 1) \cdot \mathcal{Q}(x_{j_{1/\varepsilon}})) = \sum_{1 < t < 1/\varepsilon} \mathcal{Q}(x_{j_t}) + \mathcal{Q}(x_{j_{1/\varepsilon}}) \\
= \sum_{1 < t \le 1/\varepsilon} \mathcal{Q}(x_{j_t}) \\
= O(\varepsilon)
$$

which concludes our proof that $||\mathcal{Q}_{I_j} - \tilde{\mathcal{Q}}_{I_j}||_1 = O(\varepsilon)$.

2 Monotonicity Tester

We start by presenting a simplified tester (which unfortunately does not work) and then discuss its issues and fixes.

 \Box

2.1 Simplified Tester

Testing Algorithm for Monotonicity *Input: (Samples of) a distribution* Q *to be tested.* 1. Take *m* samples *S* of Q. 2. For each interval I_i : (a) Let $S_i \leftarrow S \cap I_i$. (b) Let $\hat{w}_j \leftarrow \frac{|S_j|}{m}$ // *Guess of the weight of interval* I_i , *i.e. guess of* $\mathcal{Q}(I_i) = \tilde{\mathcal{Q}}(I_i)$. 3. Define \mathcal{Q}^* as follows: for all $i \in I_j$ and for all intervals I_j , $\mathcal{Q}^* := \frac{\hat{w}_j}{|I_j|}$ $|I_j|$ $\frac{1}{2}$ *Guess of* $\tilde{Q}(I_j)$ *.* 4. If Q^* is monotone decreasing then output Pass; otherwise output Fail.

The intuition behind the above tester is that when Q is (close to) monotone decreasing, \tilde{Q} and Q are close by Birge's Theorem. Therefore, the hope is that if \mathcal{Q}^* well-approximates $\tilde{\mathcal{Q}}$ then testing on \mathcal{Q}^* works for the original distribution Q. However, there are multiple problems about this idealized argument, and we are going to fix them by modifying line 4 of the tester (marked in blue).

2.2 Problems and Fixes

Problem 1. Sampling Errors. Even when both $Q = \tilde{Q}$ is monotone decreasing, it is possible that Q^* induced by our samples *S* is not *exactly* monotone decreasing due to sampling errors. Consider $Q = Q$ being uniform distributions as an example. Sampling errors can easily cause \mathcal{Q}^* to deviate from being exactly monotone.

To fix this, we will tolerate a small error when testing \mathcal{Q}^* . i.e., Instead of line 4 of the simplified tester, we use the following Test *A*:

A. If Q[∗] is *c* · *ε*-close to monotone decreasing then output Pass; otherwise output Fail.

for some constant $c < 1$. We note that Test A does not require any new samples from \mathcal{Q} , and can be implemented in poly $log(n)$ time using linear programming with $O(log n)$ variables.

Problem 2. Errors within Intervals. Recall that we flatten each intervals such that all weights inside a same interval is regarded the same. However, it is possible for an input distribution \mathcal{Q} to be monotone decreasing across different intervals, but non-monotone inside intervals. To detect this, we need another test to verify that Q looks good inside each interval. This is described as the following Test *B*:

B. For each interval I_j , run a uniformity test using samples S_j . If more than $c' \cdot \varepsilon$ -fraction of uniformity test fails, output Fail; otherwise output Pass.

for some constant $c' < 1$. The idea is that if Q is (close to) monotone, then by Birge's Theorem it is close to \tilde{Q} which is uniform within each intervals. We note that the uniformity test is guaranteed to pass only on *exactly* uniform distributions. However, one can show that for distributions where the maximum and minimum probabilities are close (which is the case within each interval of a close-to-monotone \mathcal{Q}), the uniformity test is likely to pass distributions that are *close* to uniform.

Analysis. Summarizing the above, we replace line 4 in the simplified tester with two tests *A* and *B*. The modified tester outputs Pass if and only if both tests *A* and *B* pass. We need roughly $\sqrt{I_j}$ samples for each interval I_j and the total number of intervals is $O(\frac{\log n}{\varepsilon})$. This results in a total number of samples $m = O(\sqrt{n} \cdot \text{poly}(\log n, 1/\varepsilon)).$

For the correctness, when Q is monotone thus \tilde{Q} is monotone, Test *A* passes with high probability because we can show via a Chernoff bound that each \hat{w}_j is close to $\tilde{Q}(I_j)$, which implies $\|\mathcal{Q}^* - \tilde{\hat{Q}}\|_1 \leq c \cdot \varepsilon$ for some properly chosen constant *c*. Moreover, Test *B* passes with high probability because of our argument on (tolerating) uniformity test above.

For the negative case, we show the contrapositive that if the tester is likely to pass, then Q is *ε*-close to monotone decreasing. Passing Test *A* implies that Q^* is close to monotone. Passing Test *B* means Q is almost uniform on all intervals thus close to \tilde{Q} . Therefore, since \mathcal{Q}^* is likely to well-approximate \tilde{Q} by the Chernoff bound, Q is close to monotone by the triangle inequality.