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1 Preliminaries for Testing Monotonicity of Distributions

In this lecture, we will discuss testing for monotone (decreasing) distributions over a totally ordered domain.

Definition 1.1 (Monotone Decreasing). A distribution Q over a totally ordered domain [n] is “monotone
decreasing” if for all i ∈ [n], Q(i) ≥ Q(i + 1).

We aim to find a monotonicity tester, such that

• if Q is monotone decreasing, then the tester outputs Pass with probability at least 1− δ.

• if Q is ε-far from any monotone decreasing distribution P , then the tester outputs Fail with probability
at least 1− δ.

where ε-far is measured in the L1 distance, i.e. two distributions P and Q are ε-far if and only if

∥P −Q∥1 :=
∑
i∈[n]

|P(i)−Q(i)| > ε.

1.1 Birge’s Decomposition

We will use the following decomposition procedure to construct our tester:

Given a parameter ε, partition the domain [n] into l = θ( log n
ε ) consecutive intervals:

Iε
1 , Iε

2 , · · · , Iε
l

such that |Iε
j+1| = ⌊(1 + ε)j⌋ for each j < l.

In the following, we will drop the superscript ε since it is fixed in the algorithm.

The unrounded size of the intervals increase by a factor of (1 + ε). Therefore,


|I1| = · · · |Iθ(1/ε)| = 1
|Iθ(1/ε)+1| = · · · = 2
...

.

Given the decomposition, we define “flattening” a distribution as follows:

Definition 1.2. Given a distribution Q, the “flattened distribution” Q̃ is defined as follows: for all intervals
j ∈ [l] and for all i ∈ Ij, let

Q̃(i) =
∑

i∈Ij
Q(i)

|Ij |
,

i.e., the total weight of the interval containing i divided by the number of domain elements in this interval.
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In the following, we will use Q(Ij) to denote
∑

i∈Ij
Q(i). We note that Q(Ij) = Q̃(Ij) for all intervals Ij .

The following theorem states that Q̃ is a good approximation of Q if Q is (close to) monotone decreasing.

Theorem 1.3 (Birge’s Theorem). If Q is monotone decreasing, then ∥Q − Q̃∥1 ≤ O(ε).

This gives the following immediate corollary:

Corollary 1.4. If Q is ε-close to monotone decreasing, i.e., there exists a monotone decreasing distribution
Q′ such that ∥Q −Q′∥1 ≤ ε, then ∥Q − Q̃∥1 ≤ O(ε).

1.2 Proof of Birge’s Theorem

Intuitively, Q̃ is a bad approximation of Q on intervals that contains a large drop-off. The proof of Birge’s
Theorem shows that there cannot be too many such intervals.

Proof (of Birge’s Theorem). For an arbitrary interval Ij , define xj := arg maxi∈Ij
Q(i) and yj := arg mini∈Ij

Q(i).
Observe that ∥QIj

− Q̃Ij
∥1 ≤ (Q(xj)−Q(yj)) · |Ij |, where QIj

denote the distribution Q restricted to the
interval Ij and Q̃Ij denote Q̃ restricted to Ij .

In the following, we consider intervals as three different types based on their sizes. Given an interval Ij , it is a
size-1 interval if |Ij | = 1
short interval if 1 < |Ij | < 1/ε

long interval if |Ij | ≥ 1/ε

We observe that maxi∈Ij :|Ij |>1Q(i) = O(ε) because by definition there are θ(1/ε) many size-1 intervals. For
monotone decreasing Q, if maxi∈Ij :|Ij |>1Q(i) = ω(ε) then the weight of each size-1 interval is ω(1), thus the
total weight of size-1 intervals becomes θ(1/ε) · ω(ε)≫ 1, a contradiction.

We now bound the error incurred by each type of intervals separately.

• (Size-1 Intervals.)
∑

|Ij |=1∥QIj
− Q̃Ij

∥1 = 0 because for size-1 intervals, the weight of each element is
the same as the sum of weights divided by one.

• (Short Intervals.)
∑

1<|Ij |<1/ε∥QIj
− Q̃Ij

∥1 ≤
∑

1<|Ij |<1/ε|Ij | · (Q(xj) − Q(yj)) as we argued before.
We can split the summation according to the sizes |Ij | = 2, 3, · · · , 1/ε− 1. Define jt := min{j : |Ij | = t}
for t = 2, 3, · · · , 1/ε− 1, i.e., jt is the index of the first interval of size t, we obtain∑
1<|Ij |<1/ε

∥QIj
− Q̃Ij

∥1

≤ 2 · (Q(xj2)−Q(xj3)) + 3 · (Q(xj3)−Q(xj4)) + · · ·+ (1/ε− 1) · (Q(xj1/ε−1)−Q(xj1/ε
))

= Q(xj2) +
∑

1<|t|<1/ε

Q(xjt
)− (1/ε− 1) · Q(xj1/ε

)

• (Long Intervals.) We still use the notation that jt := min{j : |Ij | = t}, i.e., jt is the index of the first
interval of size t. We get
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∑
|Ij |≥1/ε

∥QIj − Q̃Ij∥1 ≤
∑

|Ij |≥1/ε

|Ij | · (Q(xj)−Q(yj))

≤ |Ij1/ε
| · (Q(xj1/ε

)−Q(xj1/ε+1)) + |Ij1/ε+1| · (Q(xj∗+1)−Q(xj1/ε+2)) + · · ·

= |Ij1/ε
| · Q(xj1/ε

) +
∑

j>j1/ε

(|Ij | − |Ij−1|)Q(xj)

By construction, |Ij | − |Ij−1| ≈ (1 + ε)|Ij−1| − |Ij−1| ≈ ε|Ij−1|. Therefore∑
|Ij |≥1/ε

∥QIj
− Q̃Ij

∥1 ≤ |Ij1/ε
| · Q(xj1/ε

) + O(ε) ·
∑

|Ij |≥1/ε

|Ij |Q(xj+1).

Summarizing the above,

∥QIj − Q̃Ij∥1

=
∑

|Ij |=1

∥QIj
− Q̃Ij

∥1 +
∑

1<|Ij |<1/ε

∥QIj
− Q̃Ij

∥1 +
∑

|Ij |≥1/ε

∥QIj
− Q̃Ij

∥1

≤ Q(xj2)− (1/ε− 1) · Q(xj1/ε
) + O(ε) ·

∑
|Ij |≥1/ε

|Ij |Q(xj+1) + (
∑

1<t<1/ε

Q(xjt) + |Ij1/ε
| · Q(xj1/ε

))

≤ O(ε) + O(ε) ·
∑

|Ij |≥1/ε

|Ij |Q(xj+1) + (
∑

1<t<1/ε

Q(xjt
) + (|Ij1/ε

| − 1/ε + 1) · Q(xj1/ε
))

It suffices to show that
∑

|Ij |≥1/ε|Ij |Q(xj+1) = O(1) and
∑

1<t<1/εQ(xjt
)+(|Ij1/ε

|−1/ε+1)·Q(xj1/ε
) = O(ε).

The former holds because the summation is at most the cumulative mass of the probability distribution Q
which sums to 1. For the latter, we observe that

∑
1<t≤1/ε

(Q(xjt) ·
∑

|Ij |=t

|Ij |) ≤ 1

because this summation is also at most the cumulative mass of the entire distribution. Moreover, for each
1 < t ≤ 1/ε, we have

∑
|Ij |=t|Ij | ≥ θ(1/ε) by our definition of intervals. This implies

∑
1<t≤1/εQ(xjt

) = O(ε).
Finally, since (|Ij1/ε

| − 1/ε + 1) = 1/ε− 1/ε + 1 = 1, we obtain∑
1<t<1/ε

Q(xjt
) + (|Ij1/ε

| − 1/ε + 1) · Q(xj1/ε
)) =

∑
1<t<1/ε

Q(xjt
) +Q(xj1/ε

)

=
∑

1<t≤1/ε

Q(xjt
)

= O(ε)

which concludes our proof that ∥QIj − Q̃Ij∥1 = O(ε).

2 Monotonicity Tester

We start by presenting a simplified tester (which unfortunately does not work) and then discuss its issues
and fixes.
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2.1 Simplified Tester

Testing Algorithm for Monotonicity
Input: (Samples of) a distribution Q to be tested.

1. Take m samples S of Q.

2. For each interval Ij :

(a) Let Sj ← S ∩ Ij .

(b) Let ŵj ← |Sj |
m . // Guess of the weight of interval Ij, i.e. guess of Q(Ij) = Q̃(Ij).

3. Define Q∗ as follows: for all i ∈ Ij and for all intervals Ij , Q∗ := ŵj

|Ij | . // Guess of Q̃(Ij).

4. If Q∗ is monotone decreasing then output Pass; otherwise output Fail.

The intuition behind the above tester is that when Q is (close to) monotone decreasing, Q̃ and Q are close
by Birge’s Theorem. Therefore, the hope is that if Q∗ well-approximates Q̃ then testing on Q∗ works for the
original distribution Q. However, there are multiple problems about this idealized argument, and we are
going to fix them by modifying line 4 of the tester (marked in blue).

2.2 Problems and Fixes

Problem 1. Sampling Errors. Even when both Q = Q̃ is monotone decreasing, it is possible that Q∗

induced by our samples S is not exactly monotone decreasing due to sampling errors. Consider Q = Q̃ being
uniform distributions as an example. Sampling errors can easily cause Q∗ to deviate from being exactly
monotone.

To fix this, we will tolerate a small error when testing Q∗. i.e., Instead of line 4 of the simplified tester, we
use the following Test A:

A. If Q∗ is c · ε-close to monotone decreasing then output Pass; otherwise output Fail.

for some constant c < 1. We note that Test A does not require any new samples from Q, and can be
implemented in poly log(n) time using linear programming with O(log n) variables.

Problem 2. Errors within Intervals. Recall that we flatten each intervals such that all weights inside
a same interval is regarded the same. However, it is possible for an input distribution Q to be monotone
decreasing across different intervals, but non-monotone inside intervals. To detect this, we need another test
to verify that Q looks good inside each interval. This is described as the following Test B:

B. For each interval Ij , run a uniformity test using samples Sj . If more than c′ · ε-fraction of uniformity test
fails, output Fail; otherwise output Pass.

for some constant c′ < 1. The idea is that if Q is (close to) monotone, then by Birge’s Theorem it is close to Q̃
which is uniform within each intervals. We note that the uniformity test is guaranteed to pass only on exactly
uniform distributions. However, one can show that for distributions where the maximum and minimum
probabilities are close (which is the case within each interval of a close-to-monotone Q), the uniformity test
is likely to pass distributions that are close to uniform.
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Analysis. Summarizing the above, we replace line 4 in the simplified tester with two tests A and B. The
modified tester outputs Pass if and only if both tests A and B pass. We need roughly

√
Ij samples for

each interval Ij and the total number of intervals is O( log n
ε ). This results in a total number of samples

m = O(
√

n · poly(log n, 1/ε)).

For the correctness, when Q is monotone thus Q̃ is monotone, Test A passes with high probability because
we can show via a Chernoff bound that each ŵj is close to Q̃(Ij), which implies ∥Q∗ − Q̃∥1 ≤ c · ε for some
properly chosen constant c. Moreover, Test B passes with high probability because of our argument on
(tolerating) uniformity test above.

For the negative case, we show the contrapositive that if the tester is likely to pass, then Q is ε-close to
monotone decreasing. Passing Test A implies that Q∗ is close to monotone. Passing Test B means Q is
almost uniform on all intervals thus close to Q̃. Therefore, since Q∗ is likely to well-approximate Q̃ by the
Chernoff bound, Q is close to monotone by the triangle inequality.
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