
6.5240 Sublinear Time Algorithms November 18, 2022

Lecture 19
Lecturer: Ronitt Rubinfeld Scribe: Sahil Kuchlous

1 Introduction

In the last lecture we saw a property testing algorithm for testing triangle-freeness in dense graphs using
Szemeredi’s regularity lemma that depended only on ε. However, the dependence on ε was significantly
worse than even exponential. In this lecture we will partially justify this by showing super-polynomial
lower bounds on ε for property testing triangle-freeness in dense graphs based on results from additive
combinatorics.

Theorem 1 There exists a constant c such that any 1-sided error tester for triangle-freeness in dense
graphs requires Ω((c/ε)c log(1/ε)) queries.

Note that Ω((c/ε)c log(1/ε)) is worse than any poly(ε). To prove this theorem, we will need an important
tool from additive combinatorics.

2 Sum-Free Sets

The goal of this section is to prove the existence of dense subsets of integers that do not contain 3-
arithmetic progressions, which we will use to construct graphs that are far from triangle free but in
which it takes many queries to detect a triangle.

Definition 2 (Sum-free) A subset X ⊆ Z of integers is sum-free if there is no triple of distinct
elements x1, x2, x3 ∈ X such that x1 + x3 = 2x2.

Lemma 3 For all m, there exists X ⊂ [m] such that |X| ≥ m/e10
√

log(m) and X is sum-free.

To see why constructing such an X may be difficult, let’s consider an example. If we try to greedily
include numbers starting from 1, we get the set {1, 2, 4, 5, 10, . . .}. However, we can not include 9, for
example, because (1, 5, 9) would be a bad triple. Thus, it is not obvious how dense a sum-free subset
can get.
Proof [Lemma 3]

We will define parameters d = e10 logm and k =
⌊
logm
log d

⌋
− 1. Note that k ≈ logm

10
√
logm

≈
√
logm
10 .

Consider the set

XB =

{
k∑

i=0

Xid
i | Xi <

d

2
,

k∑
i=0

X2
i = B

}
.

We can think of the elements of XB as integers (Xk, . . . , X0) in base d, where every digit is smaller than
d/2. This will be useful because adding values will not result in any carries. Moreover, note that the
sets XB partition all such values based on the sum of squares of their digits. Finally, note that X2

i can
be replaced by any convex function on Xi to get a similar result. We will use these properties to show
that each set XB is sum-free.

Let us start by showing that XB ⊂ [m]. This is because the largest value in XB is at most

dk+1 = d⌊
log m
log d ⌋ ≤ dlogd m = mlogd d = m.

Next, we will pick the B that maximizes |XB |. Let us show that XB must be large. Note that
|
⋃
XB | =

∑
B |XB | = (d/2)k+1 and the number of sets XB is at most (k + 1)(d/2)2 < k · d2. Thus, the

1

average size of XB is at least (d/2)k+1

(k+1)(d/2)2 . Substituting the values of k and d, we see that this simplifies

to m/e10 logm. Thus, for the B that maximizes |XB |, we see that |XB | ≥ m/e10 logm.
Finally, let us show that all XB are sum-free. Consider an arbitrary triple x, y, z ∈ XB . If x+y = 2z,

we know that
k∑

i=0

xid
i +

k∑
i=0

yid
i = 2

k∑
i=0

zid
i.

However, note that we ensured sums of values in XB would result in no carries. Thus, this is only
possible if xi + yi = 2zi for all i ∈ [k]. Let us show this contradicts the constraint that

∑k
i=0 X

2
i = B.

We know that the function f(x) = x2 is convex, so by Jensen’s inequality we see that

1

2
(x2

i + y2i) ≥ z2i ,

where equality holds if and only if xi = yi = zi. Note that Jensen’s inequality holds for any convex
function. We know that x ̸= y ̸= z, so there must be some i ∈ [k] such that 1

2 (x
2
i + y2i) > z2i , and for all

j ̸= i we know that 1
2 (x

2
i + y2i) ≥ z2i . However, this implies that

k∑
i=0

x2
i +

k∑
i=0

y2i > 2

k∑
i=0

z2i ,

so x, y and z can not be in the same set XB , leading to a contradiction. Thus, every XB is sum-free, so
the largest XB satisfies the lemma.

3 Lower Bound

To show the lower bound, we need a second tool that we will not prove.

Theorem 4 (Goldreich-Trevisan) In the adjacency matrix model, if there exists a property tester T
that makes q(n, ε) (possibly adaptive) queries, then there exists a ‘natural’ tester T ′ that picks q(n, ε)
nodes and makes O(q2) non-adaptive queries.

Thus, an Ω(q) lower bound for a natural tester implies an Ω(
√
q) lower bound for any tester. Our goal is

to find a class of graphs that is far from triangle free, but in which a natural tester can not find a triangle
in (1/ε)log 1/ε queries. Unfortunately, it is not true that the distance of a graph from triangle-free is
equal to the number of triangles in it. For example, it is possible that a graph has nearly n triangles
that all share a single edge, making its distance from triangle-free 1. Thus, we will need a more careful
construction.

Let us start with a sum-free subset X ⊆ [m]. We will define a tripartite graph G on V1 = [m],
V2 = [2m] and V3 = [3m]. For every v ∈ V1 and x ∈ X, we will add an edge from v to v + x ∈ V2 and
v + 2x ∈ V3. Additionally, for every v ∈ V2 and x ∈ X, we will add an edge from v to v + x ∈ V3.

Let us analyze the properties of G. The number of vertices is 6m and the number of edges is
Θ(m · |X|) = Θ(n2/e10

√
logn). Next, let’s count the number of triangles. By our construction, it is clear

that there are m · |X| = O(n2/e10
√
logn) triangles of the form (v, v + x, v + 2x), since such a triangle

exists for every v ∈ V1 and x ∈ X. However, we can also show that these are the only triangles in G.
Since G is tripartite, every triangle must contain a vertex v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3. Let x1 be the
edge from v1 to v2, x2 be the edge from v2 to v3 and x3 be the edge from v1 to v3. Following the edge
from v1 to v3 and the path from v1 to v3 via v2, we see that v1 + x1 + x2 = v1 + 2x3. This implies
tat x1 + x2 = 2x3, but since X is sum-free we know that x1 = x2 = x3. Thus, this must be one of the
triangles we identified, so G contains exactly O(n2/e10

√
logn) triangles.

2

Next, note that the distance of G from triangle-free is at least the number of edge-disjoint triangles
in G, since we must remove at least one edge from every disjoint triangle. However, we know that every
triangle in G is disjoint, since if two triangles share an edge then this fixes the value of v and x, which
also uniquely determines the third vertex of the triangle. Thus, the distance of G from triangle-free is
Θ(n2/e10

√
logn).

Unfortunately, this distance is not sufficient; we want to find a graph that is ε-far from triangle free,
but G is only (1/e10

√
logn)-far. To fix this, we will define a new graph G(s) based on G as follows. Every

vertex v of G will correspond to an independent set v(s) of s vertices in G(s). An edge (u, v) in G will
correspond to a complete bipartite graph between u(s) and v(s) in G(s). Note that the number of vertices
in G(s) is Θ(m · s), the number of edges is Θ(m · |X| · s2). While G(s) has a large number of triangles,
these triangles are no longer disjoint. However, we can show that G(s) has at least m · |X| · s2 disjoint
triangles, which implies that G(s) is at least Ω(|X|/m)-far from triangle-free. By taking s = Θ(n/m)
and m ≥ (c/ε)c log(1/ε), we see that G(s) is at least ε-far from triangle-free.

Finally, we can also show that the number of triangles in G(s) is Θ(m·|X|·s3) = Θ((ε/c′)c
′ log(c′/ε) ·n3).

This implies that if we run a natural tester on q ≤ (c′′/ε)c
′′ log(c′′/ε) nodes, the expected number of

triangles is approximately q3 · (ε/c′)c′ log(c′/ε) << 1 (note that we are being a bit sloppy with constants
here). Thus, by Markov’s inequality, the probability of seeing a triangle must also be very small, so a
natural algorithm cannot tell if G(s) is triangle-free. As mentioned earlier, combined with the Goldreich-
Trevisan theorem, this completes the lower bound.

3

