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1 Introduction

In the last lecture we saw a property testing algorithm for testing triangle-freeness in dense graphs using
Szemeredi’s regularity lemma that depended only on €. However, the dependence on ¢ was significantly
worse than even exponential. In this lecture we will partially justify this by showing super-polynomial
lower bounds on ¢ for property testing triangle-freeness in dense graphs based on results from additive
combinatorics.

Theorem 1 There exists a constant ¢ such that any 1-sided error tester for triangle-freeness in dense
graphs requires Q((c/e)¢1°8(1/2)) queries.

Note that Q((c/e)¢1°8(1/9)) is worse than any poly(e). To prove this theorem, we will need an important
tool from additive combinatorics.

2 Sum-Free Sets

The goal of this section is to prove the existence of dense subsets of integers that do not contain 3-
arithmetic progressions, which we will use to construct graphs that are far from triangle free but in
which it takes many queries to detect a triangle.

Definition 2 (Sum-free) A subset X C Z of integers is sum-free if there is no triple of distinct
elements x1,x2,x3 € X such that x1 + x3 = 2x5.

Lemma 3 For all m, there exists X C [m] such that | X| > m/el®VI8(™) and X is sum-free.

To see why constructing such an X may be difficult, let’s consider an example. If we try to greedily
include numbers starting from 1, we get the set {1,2,4,5,10,...}. However, we can not include 9, for
example, because (1,5,9) would be a bad triple. Thus, it is not obvious how dense a sum-free subset
can get.

Proof [Lemma 3]

We will define parameters d = ¢'°1°8™ and k = [long — 1. Note that k ~ —Jeem o vloam
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We can think of the elements of Xp as integers (X, ..., Xo) in base d, where every digit is smaller than
d/2. This will be useful because adding values will not result in any carries. Moreover, note that the
sets X p partition all such values based on the sum of squares of their digits. Finally, note that X? can
be replaced by any convex function on X; to get a similar result. We will use these properties to show
that each set Xpg is sum-free.

Let us start by showing that Xp C [m]. This is because the largest value in Xp is at most
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Next, we will pick the B that maximizes |Xpg|. Let us show that Xp must be large. Note that
IUXg|=>5|X5| = (d/2)k"! and the number of sets Xp is at most (k + 1)(d/2)? < k - d*. Thus, the



average size of Xp is at least %. Substituting the values of k and d, we see that this simplifies

to m/el?1°e™  Thus, for the B that maximizes | Xpg|, we see that |Xp| > m/el0los™,
Finally, let us show that all Xz are sum-free. Consider an arbitrary triple z,y,z € Xg. If xt+y = 2z,

we know that i i i
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However, note that we ensured sums of values in Xpg would result in no carries. Thus, this is only
possible if ; + y; = 22; for all ¢ € [k]. Let us show this contradicts the constraint that Zf:o X? = B.
We know that the function f(z) = x? is convex, so by Jensen’s inequality we see that
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where equality holds if and only if z; = y; = z;. Note that Jensen’s inequality holds for any convex
function. We know that x # y # z, so there must be some i € [k] such that 3(2? + y?) > 22, and for all
j # i we know that % (z? + y?) > z2. However, this implies that

so z, y and z can not be in the same set X, leading to a contradiction. Thus, every X g is sum-free, so
the largest X p satisfies the lemma. B

3 Lower Bound
To show the lower bound, we need a second tool that we will not prove.

Theorem 4 (Goldreich-Trevisan) In the adjacency matriz model, if there exists a property tester T
that makes q(n,e) (possibly adaptive) queries, then there exists a ‘natural’ tester T' that picks q(n,e)
nodes and makes O(q?) non-adaptive queries.

Thus, an ©(g) lower bound for a natural tester implies an Q(,/q) lower bound for any tester. Our goal is
to find a class of graphs that is far from triangle free, but in which a natural tester can not find a triangle
in (1/¢)°81/¢ queries. Unfortunately, it is not true that the distance of a graph from triangle-free is
equal to the number of triangles in it. For example, it is possible that a graph has nearly n triangles
that all share a single edge, making its distance from triangle-free 1. Thus, we will need a more careful
construction.

Let us start with a sum-free subset X C [m]. We will define a tripartite graph G on V; = [m],
Vo = [2m] and V3 = [3m]. For every v € V5 and x € X, we will add an edge from v to v+ € V; and
v+ 2z € V3. Additionally, for every v € V5 and € X, we will add an edge from v to v+ z € V.

Let us analyze the properties of G. The number of vertices is 6m and the number of edges is
O(m -|X|) = ©(n?/e'%V1e ™) Next, let’s count the number of triangles. By our construction, it is clear
that there are m - |X| = O(n?/e'%V°e") triangles of the form (v,v + ,v 4 2x), since such a triangle
exists for every v € V3 and « € X. However, we can also show that these are the only triangles in G.
Since G is tripartite, every triangle must contain a vertex vy € Vi, vy € V5 and vg € V3. Let 1 be the
edge from vy to vg, x2 be the edge from vy to vg and x3 be the edge from v, to v3. Following the edge
from v; to vz and the path from v; to vz via v, we see that vy + x1 + xo = v; + 2x3. This implies
tat ©1 + zo = 2x3, but since X is sum-free we know that 1 = x5 = x3. Thus, this must be one of the
triangles we identified, so G contains exactly O(n?/e!®VI°8™) triangles.



Next, note that the distance of G from triangle-free is at least the number of edge-disjoint triangles
in G, since we must remove at least one edge from every disjoint triangle. However, we know that every
triangle in G is disjoint, since if two triangles share an edge then this fixes the value of v and z, which
also uniquely determines the third vertex of the triangle. Thus, the distance of G from triangle-free is
O(n?/el0viogn),

Unfortunately, this distance is not sufficient; we want to find a graph that is e-far from triangle free,
but G is only (1/e'°VI°8™)_far. To fix this, we will define a new graph G*) based on G as follows. Every
vertex v of G will correspond to an independent set v(*) of s vertices in G*). An edge (u,v) in G will
correspond to a complete bipartite graph between u(s) and v®) in G*). Note that the number of vertices
in G is ©(m - s), the number of edges is O(m - |X| - s2). While G(*) has a large number of triangles,
these triangles are no longer disjoint. However, we can show that G(*) has at least m - |X| - 5% disjoint
triangles, which implies that G(®) is at least Q(|X|/m)-far from triangle-free. By taking s = ©(n/m)
and m > (c/e)1°8(1/9)  we see that G(*) is at least e-far from triangle-free.

Finally, we can also show that the number of triangles in G(*) is ©(m-| X|-s3) = ©((g/¢/)* 108(c'/€) .p3),
This implies that if we run a natural tester on ¢ < (¢’ /)¢ 108(¢"/2) nodes, the expected number of
triangles is approximately ¢2 - (¢/c’ )C/ log(c'/e) << 1 (note that we are being a bit sloppy with constants
here). Thus, by Markov’s inequality, the probability of seeing a triangle must also be very small, so a
natural algorithm cannot tell if G(*) is triangle-free. As mentioned earlier, combined with the Goldreich-
Trevisan theorem, this completes the lower bound.



