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The content of this class is follows:

• We present algorithms for estimating the number of connected components and the weight of
the minimum spanning tree (MST) in a graph, aiming for efficient computation with controlled
approximation errors.

• For estimating connected components, we introduce a sampling-based algorithm that approximates
the number within an additive error of ϵn, utilizing partial breadth-first searches to limit runtime
to O

(
∆
ϵ4

)
, where ∆ is the maximum degree.

• For estimating the MST weight, we leverage properties of Kruskal’s algorithm by estimating
connected components at various weight thresholds. This approach achieves a multiplicative ϵ-

approximation of the MST weight with a runtime of O
(

∆w5

ϵ4

)
, where w is the maximum edge

weight.

1 Estimating Number of Connected Components

1.1 Problem Description

We are given a graph G = (V,E) represented as an adjacency list. Let n = |V | be the number of vertices,
and m = |E| be the number of edges. The maximum degree of any vertex in the graph is denoted as ∆.
Our objective is to estimate the number of connected components in G with a given accuracy parameter
ϵ, where the estimate is close to the actual number of connected components with a small additive error.
The algorithm returns an estimate C̃ of the number of connected components C in the graph such that:

C − ϵn ≤ C̃ ≤ C + ϵn.

Here, C̃ is the estimated number of components, and ϵn is the bound on the error between the estimate
and the true number of components.

Query model: degree queries (number of edges connected to a vertex) and neighbor queries in constant
time.

1.2 Algorithm Overview

Step 1: Sampling and Computing the Sizes of Components The algorithm begins by randomly
sampling a set of vertices U ⊆ V . For each sampled vertex u ∈ U , the algorithm calculates the size of
the connected component it belongs to, denoted as nu. The size nu can be computed by performing a
breadth-first search (BFS) or depth-first search (DFS) starting from u.

The critical observation is that for any connected component A ⊆ V :∑
u∈A

1

nu
= 1.

Thus, the total number of connected components in the graph can be estimated by summing the recip-
rocal of component sizes for all vertices:

C =
∑
u∈V

1

nu
.
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Step 2: Approximation of Component Sizes For efficiency, the algorithm introduces an approxi-
mation to handle large components. Specifically, if the size of a connected component nu exceeds 2

ϵ , the
component is approximated coarsely. For components smaller than 2

ϵ , we compute the exact size. The
approximation is given by:

n̂u = min(nu,
2

ϵ
).

This approximation works as follows: while performing BFS (Breadth-First Search) starting from vertex
u, the algorithm continues to explore vertices in the component of u. However, once the BFS reaches
either 2

ϵ unique vertices or the entire connected component, whichever happens first, the search stops. If
the BFS completes before reaching 2

ϵ vertices, the exact size of the component is used. Otherwise, the
size is approximated as 2

ϵ . This ensures that large components are handled more efficiently without fully
exploring them, thereby saving computational time.

The algorithm will estimate the following quantity Ĉ:

Ĉ =
∑
u∈V

1

n̂u
.

The algorithm ensures the approximation error is controlled because the reciprocal of large numbers
are very close to each other. Formally, we have the following lemma:

Lemma 1 For all vertices u ∈ V , the following inequality holds:∣∣∣∣ 1

n̂u
− 1

nu

∣∣∣∣ ≤ ϵ

2
.

This lemma provides a bound on the error between the estimated size of the connected component
containing vertex u, n̂u, and its true size nu, in terms of their reciprocals. We now analyze two cases
based on the definition of n̂u.

Case 1: When n̂u = nu This case occurs when the size of the connected component containing
vertex u is smaller than or equal to 2

ϵ . That is, nu ≤ 2
ϵ .

In this case, the estimate n̂u is exactly equal to the true size nu, meaning:

n̂u = nu.

Therefore, the difference between the reciprocals is:∣∣∣∣ 1

n̂u
− 1

nu

∣∣∣∣ = ∣∣∣∣ 1

nu
− 1

nu

∣∣∣∣ = 0.

Since the error is exactly zero in this case, the bound ϵ
2 is trivially satisfied.

Case 2: When n̂u = 2
ϵ This case occurs when the size of the connected component containing

vertex u is larger than 2
ϵ , meaning nu > 2

ϵ . In this case, the algorithm approximates the size of the
component by setting:

n̂u =
2

ϵ
.

The difference between the reciprocals is:∣∣∣∣ 1

n̂u
− 1

nu

∣∣∣∣ = ∣∣∣∣ ϵ2 − 1

nu

∣∣∣∣ .
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Since nu > 2
ϵ , we know that 1

nu
< ϵ

2 . Thus, the error is bounded by:∣∣∣∣ ϵ2 − 1

nu

∣∣∣∣ ≤ ϵ

2
.

Therefore, in this case, the bound ϵ
2 is also satisfied.

From this lemma, we derive that the total error between the true number of components C and the
estimate Ĉ is bounded by:

|C − Ĉ| ≤
∑
u∈V

| ϵ
2
− 1

nu
| ≤ n · ϵ

2
.

1.3 Algorithm for Estimating Ĉ

Let b > 0 be a large enough constant. We will specify it in the analysis.

Algorithm 1: EstimateNumberOfConnectedComponents

Input: Graph G = (V,E), accuracy parameter ϵ
Output: Estimated number of connected components Ĉ

1 r ← b
ϵ3 // Set sample size based on accuracy parameter ;

2 U ← {u1, u2, . . . , ur} // Randomly sample r vertices from V ;
3 S ← 0 ;
4 for each vertex ui ∈ U do
5 n̂ui

← BFS(ui) // Perform BFS to compute component size of ui stopping when reach
enough vertices;

6 S ← S + 1
n̂ui

;

7 C̃ ← n
r × S // Scale the estimate by the total number of vertices ;

8 return C̃;

Note that the final estimate C̃ is computed by scaling the sum of the reciprocals by n
r , where n is

the total number of vertices and r is the size of the sample.

Runtime Analysis: Each BFS has a time complexity of O(∆/ϵ). Since the BFS is performed for each
of the r = 1

ϵ3 sampled vertices, the overall runtime of the algorithm is:

O(r ·∆/ϵ) = O
(
∆

ϵ4

)
.

Theorem 2 The probability that the estimate of the number of connected components C̃ deviates from
the quantity Ĉ by more than ϵ · n2 is bounded as follows:

Pr
[∣∣∣C̃ − Ĉ

∣∣∣ ≤ ϵn

2

]
≥ 3

4
.

Proof Let Xi = 1
n̂ui

, where n̂ui is the estimated size of the connected component for the sampled

vertex ui. Define the sum of these values over the sample set U = {u1, u2, . . . , ur} as:

S =

r∑
i=1

Xi.

We compute the average of these values:

S

r
=

1

r

r∑
i=1

1

n̂ui

=
C̃

n
.
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The expected value of each Xi is:

p = E[Xi] =
1

n

∑
u∈V

1

n̂u
=

Ĉ

n
.

Define δ = ϵ
2 . Recall that:

r = b/(ϵ)3.

0 ≤ 1

nu
≤ 1

n̂u
≤ ϵ

2
.

We know that:

n ≥
∑
u∈V

1

n̂u
≥ ϵn

2
.

Thus:
ϵ

2
≤ Ĉ

n
≤ 1.

We want:

Pr[|C̃ − Ĉ| ≥ ϵ · n
2

] ≤ Pr[|C̃ − Ĉ| ≥ ϵ

2
· Ĉ]

= Pr[| C̃
n
− Ĉ

n
| ≥ ϵ

2
· Ĉ
n
]

≤ e−Ω(r·p·δ2) = e−Ω( b
ϵ3

· Ĉn · ϵ24 ) ≤ e−Ω(b),

where we use the Chernoff bound, and the fact that Ĉ
n ≥

ϵ
2 to bound the last exponent. This is the

reason why we set 1
n̂u

to be ϵ
2 instead of 0.

We can now pick b so that e−Ω(b) ≤ 1
4

This implies:

Pr[|C̃ − Ĉ| ≤ ϵn

2
] ≥ 3/4.

Furthermore, based on our last section we have:

|C − Ĉ| ≤ ϵn

2
.

Therefore, based on the triangular inequality:

|C̃ − C| ≤ ϵn.
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2 Estimation of Minimum Spanning Tree (MST)

2.1 Problem Description

We are given a graph G = (V,E) with maximum degree ∆, where each edge e = (u, v) ∈ E has an integer
weight w(u, v) ∈ {1, . . . , w} ∪ {∞} where ∞ means an edge does not exist. The graph is connected, and
our objective is to estimate the weight of the minimum spanning tree (MST), denoted by M , within a
factor of ϵ. The algorithm estimates the weight M̂ of the minimum spanning tree such that:

(1− ϵ)M ≤ M̂ ≤ (1 + ϵ)M.

where M is the true weight of the MST, and M̂ is the estimate returned by the algorithm.

Query model: degree queries (number of edges connected to a vertex) and neighbor queries in constant
time.

2.2 Approximation Algorithm Overview

Step 1: Estimation of Connected Components for Each Weight The algorithm starts by
estimating the number of connected components C(i) in the subgraph induced by edges with weights
≤ i, for i = 1, . . . , w. Each C(i) is computed with an additive error of ϵ′ = ϵ

2wn.

Step 2: Estimating the MST Weight The weight of the MST is approximated using the number
of connected components in each subgraph:

M̂ = n− w +

w−1∑
i=1

Ĉ(i).

Here, Ĉ(i) is the estimated number of components with edge weights ≤ i.

2.3 Why the Solution Works (Intuition from Kruskal’s Algorithm)

Kruskal’s algorithm constructs the MST by adding edges in increasing order of weight, always adding
the smallest edge that connects two previously unconnected components. The idea behind our algorithm
is to approximate the same process by progressively considering edges of increasing weight.

For each weight i, The algorithm constructs a subgraph Gi that contains all edges with weight ≤ i.
The number of connected components Ĉ(i) in each subgraph is estimated, which gives an approximation
of how many additional edges need to be added to span all components. Critically, The algorithm
handles weights in a manner similar to how Kruskal’s algorithm would process them in sorted order.
It first considers all edges of weight 1, then weight 2, and so on. This ensures that the MST weight is
approximated correctly by the careful accounting for the contribution of edges.

2.4 Detailed Explanation: Two ways of computing the weight of the MST

The weight of the MST can be expressed as the sum of contributions from edges of different weights.
Define αi as the number of edges with weight i in the MST. Then, the total weight of the MST M is:

M =

w∑
i=1

i · αi.

This sum can be expanded as:
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M =

w∑
i=1

αi +

w∑
i=2

αi +

w∑
i=3

αi + · · ·+
w∑

i=w

αi.

Alternatively, in terms of connected components, the MST weight can be written as:

M = (C(0) − 1) + (C(1) − 1) + · · ·+ (C(w−1) − 1).

This equation follows because the corresponding summandi, i.e.
∑w

i=j αi and C(j−1) are equal for
every j = 1, . . . , w. The reason why the two are equal is because the number of edges with weight ≥ i
in the MST that are needed to make the graph connected is exactly the number of components in Gi−1

and the expression C(i) represents the number of connected components when considering edges with
weights ≤ i. The total weight of the MST is:

M = n− w +

w−1∑
i=1

C(i).

Here, n is the total number of vertices, and w is the maximum edge weight.

2.5 Pseudocode for MST Estimation

Algorithm 2: EstimateMSTWeight

Input: Graph G = (V,E), maximum edge weight w, accuracy parameter ϵ
Output: Estimated weight of the MST M̂

1 M̂ ← n− w // Initialize the estimate of the MST weight;
2 for i← 1 to w − 1 do
3 Gi ← Subgraph of G with edge weights ≤ i;

4 Ĉ(i) ← EstimateConnectedComponents(Gi,
ϵ
2w );

5 M̂ ← M̂ + Ĉ(i);

6 return M̂ ;

2.6 Runtime and Approximation Guarantee

Runtime Analysis: The runtime of the algorithm is dominated by the calls to estimate the connected
components. The complexity is:

O
(
∆w5

ϵ4

)
.

where ∆ is the maximum degree of the graph.

Approximation Guarantee: We call the approximate connected components algorithm with a failure
probability of δ ≤ 1

4w . The probability that all calls return an ϵ′-approximate result is:

Pr[all calls give ϵ′ approximation] ≥ 1− w

4w
=

3

4
.

If this condition holds, the error between the true MST weight M and the estimated weight M̂ is:

|M − M̂ | = |
w−1∑
i=1

C(i) −
w−1∑
i=1

Ĉ(i)| ≤ w · ϵ′ = w · ϵ

2w
· n =

ϵn

2
.
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Since M ≥ n− 1 ≥ n
2 , this implies:

|M − M̂ | ≤ ϵM.

This ensures that the approximation error is within a multiplicative factor of ϵ relative to the true MST
weight.

7


