
6.5240 Sublinear Time Algorithms September 16, 2024

Lecture 4
Lecturer: Ronitt Rubinfeld Scribe: Shashata Sawmya

Today in the class we learned about a sublinear time algorithm for graph coloring.

1 Graph Coloring

Definition 1 A “proper c-coloring” of graph G = (V,E) assigns Cv from a “palette” of size c to
each v ∈ V such that ∀(u, v) ∈ E, Cu ̸= Cv

• Graph coloring is a NP-Hard problem in general

• There are some special classes of graphs where they are easier. For example: trees and bipartite
graphs.

• One important case solvable in linear time is c ≥ ∆ + 1 coloring when maximum degree of
graph is ∆.

Algorithm 1 A greedy algorithm for finding a (∆ + 1)-coloring

1: for each v ∈ V do
2: Assign Cv different from all Cu for u ∈ N(v)
3: end for

Running time of Algorithm 1 is O(m). But the question is can we do better than this?

Algorithm 2 GreedyListColoring

1: for each vertex v ∈ V do
2: L(v)← {1, . . . ,∆+ 1}
3: end for
4: for each vertex v ∈ V (in an arbitrary order) do
5: if L(v) = ∅ then
6: return fail
7: else
8: Assign any color cv ∈ L(v) to v
9: Remove cv from L(u) for all neighbors u of v

10: end if
11: end for

Let’s analyze the running time of GreedyListColoring

Running time =
∑
v

(
time to find color cv in L(v) +

∑
u∈Nv

time to remove color cv from L(u)

)
= O(m)

It looks like we are not improving. To make our lives a little bit easier, let’s consider a graph
query model for Graph G = (V,E) that supports the following queries:

1

Figure 1: A simple example of palette sparsification

• Degree queries: Given u ∈ V , what is deg(u)?

• Pair queries: Given u, v ∈ V , is it true that (u, v) ∈ E?

• Neighbor queries: Given u ∈ V and k ∈ N, what is the k-th neighbor of u?

2 Palette Sparsification

Till now, we haven’t been able to improve the running time beyond O(m). To alleviate this, we
introduce a new technique known as Palette Sparsification.

Definition 2 ∀ nodes v, sample k = O(log n) colors from {1, 2, ...,∆+ 1} to get the list L(v)

Here L(v) is the sparser palette of vertex v. We state a lemma without providing a proof.

Lemma 3 With high probability, a graph G = (V,E) can be colored such that cv ∈ L(v) for all
v ∈ V via the GreedyListColoring algorithm.

A theorem follows from this lemma with the addition of ∆ ≤
√
n case. The purpose of introducing

Palette Sparsification is to establish a framework that enables the proof of this theorem.

Theorem 4 One can find a (∆+ 1)-coloring of an n-vertex graph in Õ(n
√
n) time.

Theorem 4 is the main result that we will prove soon. The key idea is that using palette
sparsification, we can ignore some edges as they won’t create coloring conflicts between the edge
vertices. Figure 1 shows an example where, after sparsification, we can ignore the crossed-out edges
as it won’t cause other neighbors to lose colors from their palette. We throw out all edges (u, v)
such that L(v) ∩ L(u) = ∅. We will see shortly that Gsparse doesn’t have a lot of edges. We define
Esparse = {(u, v) ∈ E : L(u) ∩ L(v) = ∅}.

Claim 5 With high probability, |Esparse| = O(n log2 n)

Proof We begin by fixing a vertex u ∈ V . Let L(u) = {1, 2, . . . , k} represent the palette of
available colors for u. Now, for each vertex v ∈ N(u) and each color i ∈ {1, 2, . . . , k}, define an
indicator variable Xv,i as follows:

Xv,i =

{
1, if i ∈ L(v),

0, otherwise.

We now define the total number of edges that involve color i in the subgraph Gsparse. Let

X =

k∑
i=1

∑
v∈N(u)

Xv,i,

2

where X represents the number of edges involving color i in the sparsified graph Gsparse. Since the
inclusion of any edge in Esparse depends on whether two adjacent vertices share a common color in
their respective lists, X acts as an upper bound on deg(u) in Gsparse.

Next, we compute the expected value of Xv,i, which is the probability that color i is present in
L(v). Since L(v) consists of k colors chosen uniformly from ∆+ 1 possible colors, we have:

E[Xv,i] =
k

∆+ 1
.

Now, by the linearity of expectation, the expected value of X becomes:

E[X] =

k∑
i=1

∑
v∈N(u)

E[Xv,i] = k ·∆ · k

∆+ 1
.

Since k
∆+1 ≤

k
∆ , we obtain:

E[X] ≤ k2.

Given that k = Θ(log n), it follows that E[deg(u)] ≤ O(log2 n).
Finally, since the expected degree of each vertex u in the sparsified graph is O(log2 n), and there

are n vertices, the total number of edges in Gsparse is at most O(n log2 n). Therefore, we conclude
that |Esparse| = O(n log2 n) (One can show “with high probability” using Chernoff bounds).

3 A Õ(n
2

∆)-time palette coloring algorithm

Assuming an earlier lemma we provided without proof (Lemma 3), we now give a sublinear time
algorithm for fnding a (∆ + 1)-coloring of a graph.

Algorithm 3 A sublinear time algorithm for (∆ + 1) graph coloring

Input: A graph G = (V,E) with n = |V | vertices and maximum degree ∆.
Output: A valid (∆ + 1)-coloring of G.

1. Construct the Palette for Each Vertex:

• For each vertex v ∈ V , sample k = Θ(log n) colors from the palette {1, 2, . . . ,∆+ 1} to
create a list L(v) of available colors for vertex v.

2. Construct the Sparse Subgraph Gsparse = (V,Esparse):

• For each color c ∈ {1, 2, . . . ,∆ + 1}, create the set Xc = {v ∈ V : c ∈ L(v)}, which
consists of all vertices that have color c in their palette.

• For each pair of vertices vi, vj ∈ Xc, where vi ̸= vj :

– Query if (vi, vj) ∈ E. If true, add the edge (vi, vj) to the edge set Esparse of the
sparse subgraph.

3. Apply GreedyListColoring on the sparse subgraph Gsparse

Step 1 in algorithm 3 requires O(nlogn) time. From 5 we get the running time of step 3 is
O(nlog2n). Creating the set Xc for each color c requires O(nlogn) time. Let us analyze the running

3

time of finding Esparse in step 2. For each color c,

E
[(

Xc

2

)]
≤ E[

∑
u,v∈V
u̸=v

1u,v both pick color c] =

(
n

2

)(
k

∆+ 1

)2

= O

(
n2 log2 n

∆2

)
.

Therefore, the running time to query all pairs in each Xc is at most,

(∆ + 1) ·O
(
n2 log2 n

∆2

)
= Õ

(
n2

∆

)
This can be used to prove theorem 4. To prove this theorem, we will split the argument into

two cases: small-degree and large-degree vertices. For small-degree vertices, the coloring will be
straightforward due to the limited number of colors required. For large-degree ones, we will rely
on Lemma 3 and Claim 5 to handle the list coloring and ensure that all vertices can be colored
appropriately.
Proof We consider two cases based on the value of the maximum degree ∆ in the graphG = (V,E).

Case 1: If ∆ ≤
√
n, then we can directly use the GreedyListColoring algorithm. The time com-

plexity of GreedyListColoring is bounded by O(|E|). Since |E| ≤ n∆, this gives a time complexity
of:

O(|E|) ≤ O(n∆).

Because ∆ ≤
√
n in this case, we have:

O(n∆) ≤ O(n
√
n),

Case 2: If ∆ >
√
n, we apply the palette sparsification technique. As discussed earlier, the time

complexity for palette sparsification is Õ
(

n2

∆

)
. Given that ∆ >

√
n, we have:

Õ

(
n2

∆

)
≤ Õ

(
n2

√
n

)
= Õ(n3/2),

Thus, the overall time complexity of the algorithm is Õ(n3/2) .

4 A weaker palette sparsification

We relax lemma 3 to allow choosing from 2∆ colors instead of (∆+1) colors to show the “with high
probability” part of lemma 3. A proof surely exists for the (∆+1) case, but we relax the constraints
to simplify the proof. Thus the updated palette sparsification problem is:

∀ nodes v, sample k = O(log n) colors from {1, 2, ...,∆+ 1} to get the list L(v) .

Note, other parts in the proof of Theorem 4 remain the same, hence giving an Õ(n3/2) time al-
gorithm for finding a 2∆-coloring of an n-vertex graph.

Lemma 6 With high probability, a graph G = (V,E) can be colored via GreedyListColoring with
∆+ 1 replaced by 2∆ colors such that cv ∈ L(v) for all v ∈ V .

The key idea of proving Lemma 6 is to run the palette-coloring algorithm with palette size
s = 2∆. Output fail if we run out of colors.
Proof Consider a vertex v and suppose that a color c ∈ {1, 2, . . . , 2∆} is good if c ∈ L(v) and if
c has not been assigned to any of v’s previously colored neighbors. If the list L(v) contains at least

4

one good color c, then v can be successfully colored. Since L(v) is generated independently from the
choices made for the neighbors of v, we can imagine choosing L(v) ”on the fly” as we process v.

Since each vertex v has at most ∆ neighbors, we can compute the probability that none of the
colors in L(v) are good. This probability is given by:

Pr[L(v) contains no good color] ≤
(
∆
k

)(
2∆
k

) =
∆(∆− 1) . . . (∆− k + 1)

(2∆)(2∆− 1) . . . (2∆− k + 1)
<

(
1

2

)k

.

Since k = Θ(log n), we have:

Pr[L(v) contains no good color] <

(
1

2Θ(logn)

)
=

1

nα

for some constant α.
Using the union bound over ∀ v ∈ V , we now calculate the probability that there exists at least

one vertex v such that L(v) has no good color:

Pr[there exists a vertex v such that L(v) has no good color] ≤ 1

nα′ ,

for some constant α′ (e.g., α′ = 3). Hence, with high probability, no vertex will fail to find a valid
color from its list. It follows that G will have a proper list coloring with high probability.

5

