
15-859(A) Machine Learning Theory

Probabilistic inequalities

A common question that comes up in machine learning is: \Given some �xed hypothesis

h, how much data do I need to see so that I can be con�dent that its observed error will

be near to its true error?" We have already seen this as: \What's the chance that a given

hypothesis of true error � or more will have observed error of 0?"

In this case, from �rst principles we calculated the probability to be (1� �)

m

, where m is the

number of examples. We then noticed that if there are N hypotheses under consideration,

and this quantity is �=N , then there is at most a � chance there exists any hypothesis that

fools us. Solving for m, we got that
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examples su�ce.

More generally, suppose we consider a hypothesis with true error p, and let q = 1 � p. If

we see m examples, then the expected fraction of mistakes is p. The standard deviation �

of this quantity is

q

pq=m. We can now use a convenient rule for independent identically

distributed Bernoulli trials, which in our terminology is:

Pr[jobserved error� true errorj > 1:96�] < 0:05:

For instance, if we want with 95% con�dence for our true and observed errors to di�er by

only �, then we need to see only 4pq=�

2

examples (approximating 1:96

2

by 4), which is at

most 1=�

2

. (We want to get rid of the p and q since we don't know them).

The above rule is convenient for testing out a single hypothesis on test data. More generally,

we'd like a rule that can be applied for any desired con�dence level (like the �rst case above)

but holds even when the observed error is not 0 (like the second case above). For instance,

we might want to prove uniform convergence results, or we might just want to test out

several hypotheses. Luckily, there are some convenient inequalities for doing this, known

as Hoe�ding and Cherno� bounds. These bounds state the following. (Actually, they hold

for a variety of situations we won't describe here; a good book that discusses how these are

derived and many other things is Alon and Spencer's The Probabilistic Method.)

Consider a hypothesis with true error rate p (or a coin of bias p) observed on m examples

(the coin is 
ipped m times). Let S be the number of observed errors (the number of heads

seen) so S=m is the observed error rate.

Hoe�ding bounds state that for any � 2 [0; 1],

1. Pr[

S
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2
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2. Pr[

S

m

< p � �] � e

�2m�

2

:

Cherno� bounds state that under the same conditions,
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> p(1 + �)] � e
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=3

, and
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�mp�

2

=2

.
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Let's do a quick example of using Hoe�ding bounds. Suppose we'd like to say that with high

probability (1� �), all hypotheses in H have their observed error within � of their true error.

To achieve this, we just need for each hypothesis individually to have con�dence parameter

�=jHj. So, we set 2e

�2m�

2

� �=jHj, or:

2m�

2

� ln(2jHj=�):

We can now either solve for � as a function of m and � or solve for m as a function of � and

�. Solving for �, we �nd that our goal is achieved for � satisfying:

� �

s

ln(2jHj=�)

2m

:

This says roughly that it su�ces to go

q

2 ln(2jHj=�) standard deviations to get our desired

con�dence. Actually, this is a nice way of thinking about the meaning of Hoe�ding bounds:

they say that if we want to replace the \0:05" in the earlier equation with some arbitrary

small �

0

, then it su�ces to go about

q

2 ln(2=�

0

) standard deviations.

Solving for m we get:

m �

1

2�

2

ln(2jHj=�) =

1

2�

2

[ln(jHj) + ln(2=�)]:

This is a lot like the �rst PAC bound, but we are now quadratic in 1=�.

What about that pesky �

2

? One thing we can do is to relax our goal, and say that for

hypotheses whose true error is greater than �, we are satis�ed if their observed error comes

just within a factor of 2. This may be a reasonable goal since our main concern about the

high-error hypotheses is that they not fool us | we don't care so much to know exactly how

bad they are. In any case, for this goal we can now use Cherno� bounds.

If p � � and we only need empirical error at least p=2 with con�dence �

0

, we can solve

e

�mp=8

� �

0

to get that it su�ces to have m �

8

p

ln(2=�

0

) (and we can replace p with � for a

weaker bound). On the other hand, if p < �, we can rewrite our additive error goal by saying

that we want the observed error to be no more than �(1 + 1), which by Cherno� bounds

implies that m �

3

�

ln(1=�

0

) examples su�ce. So, setting �

0

= �=jHj we get that:

m �

8
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examples su�ce.
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