
15-859(D) Randomized Algorithms

Notes for 9/24/98

* useful probabilistic inequalities

* Start on randomized rounding

Useful probabilistic inequalities

Say we have a random variable X. Often want to bound the probability that X is too

far away from its expectation. [In �rst class, we went in other direction, saying that with

reasonable probability, a random walk on n steps reached at least

p

n distance away from

its expectation]

Here are some useful inequalities for showing this:

Markov's inequality: Let X be a non-negative r.v. Then for any positive k:

Pr[X � kE[X]] � 1=k:

(No need for k to be integer.) Equivalently, we can write this as:

Pr[X � t] � E[X]=t:

Proof. E[X] � Pr[X � t] � t+Pr[X < t] � 0 = t �Pr[X � t]:

Defn of Variance: var[X] = E[(X �E[X])

2

]. Standard deviation is square root of vari-

ance. Can multiply out variance de�nition to get:

var[X] = E[X

2

� 2XE[X] +E[X]

2

] = E[X

2

]� (E[X])

2

:

Chebyshev's inequality: Let X be a r.v. with mean � and standard deviation �. Then

for any positive t, have:

Pr[jX � �j > t�] � 1=t

2

:

Proof. Equivalently asking what is the probability that (X � �)

2

> t

2

var[X]. Now,

just think of l.h.s. as a new non-negative random variable Y . What is its expectation?

So, just apply Markov's inequality.

Let's suppose that our random variable X = X

1

+ : : :+X

n

where the X

i

are simpler things

that we can understand. Suppose there is not necessarily any independence. Then we can

still compute the expectation

E[X] = E[X

1

] + : : :+E[X

n

]

and use Markov. (i.e., expectation is same as if they were independent)
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Suppose we have pairwise independence. Then, var[X] is same as if the X

i

were fully

independent. In fact, var[X] =

P

i

var[X

i

].

Proof.

E[X

2

]� (E[X])

2

=

X

i

X

j

E[X

i

X

j

]�

X

i

X

j

E[X

i

]E[X

j

]

=

X

i

E[X

2

i

]�

X

i

E[X

i

]

2

where the last inequality holds because E[XY ] = E[X]E[Y ] for independent random vari-

ables, and all pairs here are independent except when i = j. So, can apply Chebyshev

easily.

Cherno� and Hoe�ding bounds

What if the X

i

's are fully independent? Let's say X is the result of a fair, n-step f�1;+1g

random walk (i.e.,Pr[X

i

= �1] = Pr[X

i

= +1] = 1=2 and theX

i

are mutually independent.)

In this case, var[X

i

] = 1 so var[X] = n and �(X) =

p

n. So, Chebyshev says:

Pr[jXj � t

p

n] � 1=t

2

:

But, in fact, because we have full independence, we can use the stronger Cherno� and

Hoe�ding bounds that in this case tell us:

Pr[X � t

p

n] � e

�t

2

=2

:

The book contains some forms of these bounds. Here are some forms of them that I have

found to be especially convenient.

Let X

1

; : : : ;X

n

be a sequence of n independent f0; 1g random variables with Pr[X

i

= 1] = p

i

not necessarily the same. Let S be the sum of the r.v., and � = E[S]. Then, for 0 � � � 1,

the following inequalities hold:

� Pr[S > (1 + �)�] � e

��

2

�=3

,

� Pr[S < (1 � �)�] � e

��

2

�=2

.

Additive bounds:

� Pr[S � � > �n] � e

�2n�

2

.

� Pr[S � � < ��n] � e

�2n�

2

.

Also, for any k > 1, we get:

� Pr[S > k�] <

�

e

k�1

k

k

�

�

.
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Here is a somewhat intuitive proof, for the case of a fair random walk. Very similar to proof

in book, but with more intuitive interpretation.

Theorem 1 Let X = X

1

+: : :+X

n

with Pr[X

i

= 1] = Pr[X

i

= �1] = 1=2, and X

i

mutually

independent. Then

Pr[X > �

p

n] < e

��

2

=2

for � > 0.

Proof. Let's look at a multiplicative version of the random walk. Let's say that we start at

1, and on a heads we multiply our current position by (1+�=

p

n) and on a tails we multiply

our current position by (1��=

p

n). This is not exactly fair since if you have equal numbers

of heads and tails, you end up to the left. E.g., if you have one of each, then �nal position

is 1 � �

2

=n. On the other hand, what is the expected value of the �nal position?

Formally, can write the random variable Y for this walk as:

Y = 1 � Y

1

� Y

2

� � �Y

n

where Pr[Y

i

= 1+�=

p

n] = Pr[Y

i

= 1��=

p

n] = 1=2 and the Y

i

are independent. Since we

have full independence,

E[Y ] = E[Y

1

] �E[Y

2

] � � � = 1:

Let's now think about what Markov's inequality applied to Y tells us about our original

(additive) version of the random walk. In particular, Markov tells us that

Pr[Y > 1 � e

�

2

=2

] � e

��

2

=2

:

Here's what makes this interesting. On the one hand, we lose something by examining Y

instead of X in that even the case Y = 1 corresponds to having seen more heads than tails.

On the other hand, we gain something because it take only a few extra heads to pull Y up a

lot since Y is multiplicative. So the question now is, how many more heads than tails does

it take to pull Y above e

�

2

=2

? (Roughly, each additional

p

n=� heads multiplies Y by e. So,

once we have Y = 1 we only need

�

2

p

n extra heads. The other

�

2

p

n extra heads are needed

to reach Y = 1 in the �rst place.)

The claim is that we've set things up so that everything works out. Speci�cally, say X =

�

p

n. I.e., we have

1

2

(n��

p

n) tails and

1

2

(n+�

p

n) heads. Then (�rst pairing up the heads

and tails, then looking at the extra heads) we have:

Y = (1� �

2

=n)

1

2

(n��

p

n)

(1 + �=

p

n)

�

p

n

(and now using (1 + �)

n

� e

�n

)

� e

�(�

2

=n)

1

2

(n��

p

n)+(�=

p

n)(�

p

n)

� e

��

2

=2+�

2

= e

�

2

=2

:

So, we're done. (Actually, the \�" approximation is slightly o� in the wrong direction above,

so to be formal one would need to be more careful there.)
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Randomized routing/rounding

Given an undirected graph and a set of pairs f(s

i

; t

i

)g we want to route these pairs to

minimize the maximum congestion. This problem is NP-hard. Can we �nd an approximate

solution?

Idea: (Raghavan & Thompson)

1. Solve fractionally. Think of as multi-commodity ow (e.g., allow s

i

to route to t

i

by

sending 1=2 down one path, 1=4 down another path, and 1=4 down another). Can

solve with linear programming: for each (directed) edge e, and each commodity i,

have variable X

ei

. Constraints for inow = outow. Constraints 8e;

P

i

X

ie

� C, and

minimize C.

2. For each pair (s

i

; t

i

) we have a ow. Now what we do is view these fractional values as

probabilities and select a path such that the probability we pick edge e is equal to the

ow of this commodity on e. How can we do this algorithmically? (Give proof that

greedy approach works.)

Analysis: �x some edge. Let f

i

be the ow of commodity i on this edge. This also means

that f

i

is the probability that we picked this edge for routing (s

i

; t

i

). So, for a given edge,

can think of f0; 1g random variables X

i

corresponding to event that we picked this edge for

commodity i, where Pr[X

i

= 1] = f

i

. For a given edge, these X

i

are all INDEPENDENT.

(Not independent for the same i across di�erent edges, but that's OK). Expected value of

sum is at most C. Now apply Cherno�.

Pr[total > (1 + �)C] < e

��

2

C=3

The point now is if this is small enough (e.g., o(1=n

2

)) then the probability that there exists

an edge whose congestion exceeds this bound is also small (o(1)).

So, if C � log(n), then w.h.p., maximum is only 1 + � times larger than the expectation.

What if C = 1, or C is constant? In this case, we can apply the bound:

Pr[total > kC] < (e

k�1

=k

k

)

C

So, set k to be O(log(n)= log log(n)), and then get 1=poly(n).
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