15-859(D) Randomized Algorithms
Notes for 9/24/98

* useful probabilistic inequalities
* Start on randomized rounding

Useful probabilistic inequalities

Say we have a random variable X. Often want to bound the probability that X is too
far away from its expectation. [In first class, we went in other direction, saying that with
reasonable probability, a random walk on n steps reached at least \/n distance away from
its expectation]

Here are some useful inequalities for showing this:

Markov’s inequality: Let X be a non-negative r.v. Then for any positive k:
Pr[X > kE[X]] < 1/k.
(No need for k to be integer.) Equivalently, we can write this as:

Pr[X > 1] < E[X]/t.

Proof. E[X] > Pr[X > 1] -t + Pr[X <1]-0=1-Pr[X >1].

Defn of Variance: var[X]= E[(X — E[X])?]. Standard deviation is square root of vari-
ance. Can multiply out variance definition to get:

var[X] = E[X? — 2XE[X] + E[X]’] = E[X?] — (E[X])*.

Chebyshev’s inequality: Let X be a r.v. with mean p and standard deviation o. Then

for any positive ¢, have:
Pr(|X — pu| > to] < 1/t

Proof. Equivalently asking what is the probability that (X — u)* > ¢*var[X]. Now,
just think of I.h.s. as a new non-negative random variable Y. What is its expectation?
So, just apply Markov’s inequality.

Let’s suppose that our random variable X = X; + ...+ X,, where the X; are simpler things
that we can understand. Suppose there is not necessarily any independence. Then we can
still compute the expectation

E[X] =E[X,]+... + E[X,]

and use Markov. (i.e., expectation is same as if they were independent)
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Suppose we have pairwise independence. Then, var[X] is same as if the X; were fully
independent. In fact, var[X] = ¥, var[X;].
Proof.

E[X? — (E[X])* = ZZE[Xin] - ZZE[X E[X
7 J 4 J
= > BX] =2 BIX)
where the last inequality holds because E[XY] = E[X]E[Y] for independent random vari-
ables, and all pairs here are independent except when 1 = j. So, can apply Chebyshev
easily.
Chernoff and Hoeffding bounds

What if the X;’s are fully independent? Let’s say X is the result of a fair, n-step {—1,+1}
random walk (i.e., Pr[X; = —1] = Pr[X; = +1] = 1/2 and the X, are mutually independent.)
In this case, var[X;] = 1 so var[X]| = n and o(X) = y/n. So, Chebyshev says:

Pr[|X| > tv/n] < 1/t

But, in fact, because we have full independence, we can use the stronger Chernoff and
Hoeffding bounds that in this case tell us:

Pr[X > t/n] < e /2

The book contains some forms of these bounds. Here are some forms of them that I have
found to be especially convenient.

Let Xq,..., X, be a sequence of n independent {0, 1} random variables with Pr[X; = 1]
not necessarlly the same. Let S be the sum of the r.v., and y = E[S]. Then, for 0 < ¢
the following inequalities hold:

I/\ ||

o Pr[S > (1 +6)u] <e P13,
o Pr[S < (1 —8)u] < e ¥r2,
Additive bounds:

o Pr[S — > dn] < e,

o Pr[S — < —dn] < e 2,

Also, for any k£ > 1, we get:

o Pr[S > ky) < ()"



Here is a somewhat intuitive proof, for the case of a fair random walk. Very similar to proof
in book, but with more intuitive interpretation.

Theorem 1 Let X = Xq+...4+X, with Pr[X; = 1] = Pr[X; = —1] = 1/2, and X; mutually
independent. Then
Pr[X > \/n] < eV/?

for A > 0.

Proof. Let’s look at a multiplicative version of the random walk. Let’s say that we start at
1, and on a heads we multiply our current position by (1 +A/y/n) and on a tails we multiply
our current position by (1 — A/y/n). This is not exactly fair since if you have equal numbers
of heads and tails, you end up to the left. E.g.; if you have one of each, then final position
is 1 — A*/n. On the other hand, what is the expected value of the final position?

Formally, can write the random variable Y for this walk as:
Y=1-Y;-Y,---Y,
where Pr[Y; = 14+ A/y/n] = Pr[Y; =1—X/\/n] = 1/2 and the Y; are independent. Since we

have full independence,

E[Y] = E[i]-E[V3]--- = 1.

Let’s now think about what Markov’s inequality applied to Y tells us about our original
(additive) version of the random walk. In particular, Markov tells us that

Pr[Y > 1.eV/?) < e /2,

Here’s what makes this interesting. On the one hand, we lose something by examining Y
instead of X in that even the case Y =1 corresponds to having seen more heads than tails.
On the other hand, we gain something because it take only a few extra heads to pull Y up a
lot since Y is multiplicative. So the question now is, how many more heads than tails does
it take to pull Y above /27 (Roughly, each additional \/n/X heads multiplies Y by e. So,
once we have Y = 1 we only need %\/ﬁ extra heads. The other %\/ﬁ extra heads are needed
to reach Y = 1 in the first place.)

The claim is that we’ve set things up so that everything works out. Specifically, say X =
Av/n. Le., we have 1(n—Ay/n) tails and £(n+ Ay/n) heads. Then (first pairing up the heads

and tails, then looking at the extra heads) we have:
Y o= (1= A/n)s VO 4N )V

(and now using (1 + €)" ~ )

e~ (A2 /n) 3 (n=2V/m)+(A/v/r) (A7)
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So, we're done. (Actually, the “~” approximation is slightly off in the wrong direction above,

so to be formal one would need to be more careful there.) =



Randomized routing/rounding

Given an undirected graph and a set of pairs {(s;,#;)} we want to route these pairs to
minimize the maximum congestion. This problem is NP-hard. Can we find an approximate
solution?

Idea: (Raghavan & Thompson)

1. Solve fractionally. Think of as multi-commodity flow (e.g., allow s; to route to ¢; by
sending 1/2 down one path, 1/4 down another path, and 1/4 down another). Can
solve with linear programming: for each (directed) edge e, and each commodity 1,
have variable X.;. Constraints for inflow = outflow. Constraints Ve, ; X;. < (', and
minimize C'.

2. For each pair (s;,t;) we have a flow. Now what we do is view these fractional values as
probabilities and select a path such that the probability we pick edge e is equal to the
flow of this commodity on e. How can we do this algorithmically? (Give proof that
greedy approach works.)

Analysis: fix some edge. Let f; be the flow of commodity ¢ on this edge. This also means
that f; is the probability that we picked this edge for routing (s;, ;). So, for a given edge,
can think of {0,1} random variables X; corresponding to event that we picked this edge for
commodity 7, where Pr[X; = 1] = f;. For a given edge, these X; are all INDEPENDENT.
(Not independent for the same i across different edges, but that’s OK). Expected value of
sum is at most C'. Now apply Chernoff.

Prltotal > (1 + €)C] < e~ ¢/3

The point now is if this is small enough (e.g., o(1/n?)) then the probability that there exists
an edge whose congestion exceeds this bound is also small (o(1)).

So, if C' > log(n), then w.h.p., maximum is only 1 + ¢ times larger than the expectation.
What if ' =1, or ' is constant? In this case, we can apply the bound:

Prltotal > kC| < ("1 /kF)©

So, set k to be O(log(n)/loglog(n)), and then get 1/poly(n).



