6.895 Randomness and Computation

April 3, 2006

Lecture 14

Lecturer: Ronitt Rubinfeld

1 Analysis of the Markov Chain

1.1 Using Congestion and Canonical Paths

How do we see that the transitions of the Markov Chain from lecture 13 has low congestion? We use a canonical path argument. Consider one edge, from matching M_a to M_b . Consider some canonical path, as specified in lecture 13, from matching M_1 to M_2 that uses this edge. Given the edge (And the direction we cross it), we only need a small amount of additional information to uniquely identify M_1 and M_2 . The amount of information we need limits the number of canonical paths that cross the edge and thus provides a bound on congestion.

1.2 Identifying a Path

We will need some notation:

Let $M_1 \oplus M_2$ be the set of edges in exactly one of M_1, M_2 . Let $\overline{M} = (M_1 \oplus M_2) \setminus M_a$, though this is not necessarily a matching.

Claim 1 We can reconstruct (M_1, M_2) from (\overline{M}, M_a, M_b) .

- Uncorrected edges in M_a match edges in M_1 . (We know what has been corrected, since we know the lexicographical ordering.)
- Corrected edges in $M_a \oplus \overline{M}$ reveal the other edges of M_1 .
- We can determine M_2 similarly from M_B .

1.3 \overline{M} is Almost a Matching

We will sidestep the issue of the number of bits needed to specify \overline{M} by bounding the congestion in terms of n; the size of the Markov Chain. We notice that although \overline{M} is not a matching, it can be transformed into a matching by removing at most 2 edges, due to the structure of the fixing procedure definited earlier.

With the 2 edges e_1 and e_2 such that $\overline{M} \setminus \{e_1, e_2\}$ is a matching, we can specify (\overline{M}, M_a, M_b) with $(\overline{M} \setminus \{e_1, e_2\}, e_1, e_2, M_a, M_b)$.

1.4 Putting All the Pieces Together

Now, the matching $\overline{M} \setminus \{e_1, e_2\}$ can correspond to any state of the Markov Chain, while the edges could be any edges. Thus, any transition from M_a to M_b has congestion at most (# states in Markov Chain) $\cdot m^2$. We saw, from our previous analysis of the Canonical Path Technique, that if we have congestion of (# states in Markov Chain) $\cdot \alpha$ in a *d*-regular graph, then the conductance, Φ_G is $\geq \frac{1}{d \cdot \alpha}$. Thus, the conductance here is at least $\frac{1}{m^3}$.

1.5 Determining the Mixing Time

Again from the previous lecture, in order to mix we will need a number of steps equal to

$$t = \frac{4}{\left(\frac{1}{m^3}\right)^2} \ln\left(\frac{2}{\epsilon^2} \cdot (\# \text{ matchings})\right)$$
$$= 4m^6 \ln\left(\frac{2}{\epsilon^2} \cdot (\# \text{ matchings})\right)$$

 $\leq 4m^6 \ln \left(\frac{2}{\epsilon^2} \cdot 2^m\right) \\ \leq O\left(m^7 \ln \left(\frac{1}{\epsilon^2}\right)\right)$

1.6 Conclusions for the Markov Chain

Thus we need only a number of steps polynomial in the size of the graph and the reciprocal of the error (although this is a large polynomial). The Markov Chain we defined in the last class will mix rapidly enough to provide near-uniform generation.

2 Relating Linear Algebra to Mixing

2.1 Graphs and Linear Algebra

Given an undirected, d-regular graph G, let P be the transition matrix of G. P is both real and symmetric. Recalling our Linear Algebra, we say that v is an *eigenvector* of P with *eigenvalue* λ if $vP = \lambda v$.

Theorem 2 If P is real and symmetric, then \exists an orthonormal basis $v^{(1)}, \ldots, v^{(n)}$ of eigenvectors of P with associated eigenvalues $\lambda_1, \ldots, \lambda_n$. We will label these so that $|\lambda_i| \ge |\lambda_{i+1}|$.

Example: The transition matrix, P, of a random walk on a d-regular graph has eigenvector $\left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)$ with eigenvalue 1.

Next time: We will review more Linear Algebra and look at relating eigenvalues of P with the mixing time of G.